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ESTIMATING DENSITY AND DISPERSION FROM

TRUNCATED OR UNRESTRICTED JOINT

POINT-DISTANCE NEAREST-NEIGHBOUR

DISTANCES

C. L. BATCHELER

Forest and Range Experiment Station, Rangiora

SUMMARY: Forty computer.simulated populations were analysed to derive fonnulae for
estimating den.5ity of populations from a set of distances from sample points to the nearest
member, from that member to its neighbour and from that neighbour to its nearest neighbour.
Distances may be truncated or unlimited.

The formulae were applied to data from 11 paper.dot and 18 field populations in a total
of 37 experiments. Fifty.nine percent of the corrected estimates were within 10 percent of
"true density", 76 percent were within 20 percent, and 93 percent were within 30 percent.
Most of the unacceptable estimates were attributable to sampling difficulties (particularly in
pap:::r dot popul<>.tion3) er sampling errOr3 of the "true density" values.

An index of mn.randcmncss is an intrinsic part of the density estimating fonnula. This
index is described, and values fer the experimental data are given to illustrate the spectrum
which can be expected in biological populations.

INTRODUCTION

An estimate of a population's density which is
based on distances from sample points to the
nearest member is biased if the population is not
randomly distributed (Kendal and Moran 1963,
Pielou 1969). If population members tend to be
uniformly spaced, the estimate will be high, where-
as if they are distributed in clumps the estimate
will be low (Cottam and Curtis 1956 Pie10u 1959,

Lyon 1968).
Recent work (Batcheler and Bell 1970, Bat-

:he1er 1971, James 1971) has shown that these
;)iases are inversely related to ratios which can be

:lerived from measurements from the sample point
:0 the nearest member, and from that member to
ts nearest neighbours. This function is easily vis-
lalised by comparing a perfectly uniform popula-
ion with one which is extremely aggregated
clumped). In the former case, which is analogous
o the position occupied by a person in a square
oom, the distance from any position in the room
o any corner must be less than the distance from
hat corner to another. Consequently, the average
f any set of distances from random positions in
:1e room, divided by the distance between neigh-

bouring corners, will produce a quotient which is
less than 1. The small quotient can be used to
"knock down", and reduce, the high biased estim-

ate derived from position-ta-comer distances. Con-
versely, if it is supposed that compact clumps of
population members oscur at each corner of the
room (i.e. the population is aggregated), the aver~
age of a set of distances from random positions to
the nearest member of any clump (rll) ,vill be larg-
er than the average distance from cne member of
a clump to its nearest neighbour (Tn). This quotient
of rl1/rn, greater than 1, can be used to raise the
low biased estimate which is characteristic of agH

gregatcd populations.

The idea of using these ratios to correct bias
was developed earlier (Batcheler and Bell 1970,
Batche1er 1971) to give one of many possible equa-
tions for estimating density. The equation was
called the 50 percent corrected point distance esti.
mator:

diD ~ 1.386 X I.f50-b

Where d is the biased estimate calculated from

.
ph (2: r, 2 + (N-p)R2),

o
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R is a distance large cl1cugh to include a population
member at 50 p~rcent of the sample points, N is the
tctal numlnr of sample peintS, p is the number of
distances measured within R, f1' is a distance less than
R, and b is the ratio of the sUm of all f,,'S divided by
the sum of all rn's).

The equation was tested on only 13 populations
at the time the earlier papers were published. Des.

pite this rather superficial treatment, SOlllC fea-

tures, particularly the use of a truncated distance

formula for d, and the use of joint point and

nearest-neighbour distances as an index of disper-

sien (rather than independent point and neigh-

bour-distances as employed by Hopkins (1954)

opened up some useful possibilities in the quest to

derive a simple yet reliable method since Cottam

(1947) drew attention to the use of distance tech-
niques for woodland assessment.

No new theoretical papers have come to notice

in the inter\'ening three years to push the issue any

further. Indeed, it seems dear enough from the

forbidding assumptions which attend formal lnath-
ematical treatment of distance functions (e.g. Clark

and Evans 1954, Morisita 1957, Perrson 1962, Hol-

gate 1965, Thompson 1956, Pielou 1969, Eber-
hardt 1967), that formal methods applicable to

populations of which the dispersion parameters

cannot be easily defined, will be difficult if at all

possible.

Meanwhile, .Ia'lIes (1971) has further developed
several aspects of distance sampling by study

of 40 computer-simulated populations. He chose

26 measures of dispersion based on distances from
point-to-member and member.to-neighbours, and

tested their capacity to correct the dispersion-de-

pendent bias of nine estimates of density based on

first and second moments of the nearest member,

second nearest member, and joint nearest neigh-

bcmr. Using polynomial regression methods he

found ,three equations for correcting bias for
. .

which the co-efficient of multiple correlations, R,

exceeded -0.98. In these, the ratios used ""ere:

- -
"1 " " " 1"" d ,. <>1"

.,
fl'- r,,-, ... rl'- ...r,,- an ... 1'1'- _ rp:.!-

(rl';.! is the second nearest member to the sample

point).

That is to say, of 26 x 9 comqinations of density
estimators and corrections whiCh were tested, the

best two were based on transf0rmations of the joint

point and nearest-neighbour 'distance technique

published earlier.

These results, and the daunting quantity of stat-

istical and computer \'\'ork they represent, are in

three senses the keystone of this paper: they pro-

vide ery much stronger evidence of the utility

of the joint point-distance - nearest-neighbour

distance function than was formerly available; they

provide experimental data \\"hich enabled me to

identify a serious lack of sensiti\'ity of the earlier

model to certain patterns of aggregation; lastly,

they facilitated development of a density estimatinf.{
formula for the field situation where, for practical

reasons, a limit has to be ilnposed on the distance

searched from the sample point to the nearest mem-

ber and its sequential neighbours.

SAMPLING AKD SAMPLE STATISTICS USED

Before going further, it is useful to outline the

strategy of the sampling technique and to sum-
marise the statistics to be used in remaining sec-

tions of the paper.

A number of sample points, N, are located at

systematic intervals. along random lines, or com-

pletely at random, and the observer measures the
following distances within R, a chosen maximum

distance: -

(a) rp, if the nearest melnber is distanceR
or less from the point, rJI is meas-

ured, and p is the number of such

measurements made:

(b) I'll' if the member nearest to the sample

point is found at R or Jess, the dis-
tance from that member to its near-

est neighbour is also measured pro-

vided it is R or less, and n is the

number of such measurements:.. .

(c) I'm, if the nearest neighbour is closer than
R to the point member, the distance

to its nearest neighbour (exclusive

of the meillber nearest to the

sampling point) is measured up to
the limit R, and III is the number of

such measurcmen ts.

These quantities' are- used to calculate the fol.

lowing statistics, most of. which are described ir

detail in Batcheler and Bell (1970) and Batrh-
der (1971):
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t,":,;p/:\",

point distance frequcncy \\-ithin R:

H

d=p/7r (~r!,:! + (N-p)R:!),
"

the maximum likelihood estimate of density (in

Batdwln, 1971). which tends to,

" ...'
.,

;,/11" _ rl'-

as R increases:

I: It

I .'N/ .\), - _ II' n- _ flop'

C! ()

an empirical measure of dispersion which is sensi-

tin' to simple clustering in a population. and \yhich

tends to

'" I "~_ fl' _1'"

as R increases:
It It

I ...' .'...T /
.)

1:!=_ f!,ln-", _ r,,,p-n,
II "

an empirical measure of dispersion sensitive to clus-

tering \\.jthin clusters. which tends towards
'" I "~_rl' _rIo,

as R increase's: and
~ - -------------

( ' \ ' . / - '..., ., ( '" ) " / ) '",- = v PI_ rl' rl' - P I_fl"

the ccefficient of variation of the point distanct'

(syn. Shmtest dist<1J\ce, ~()J.jsita, ! 9.5.~).

CII.-\RACTERISTICS OF JAMES' POP\;LATIOK DATA

A~ JJJf'ntioned earlier, 40 populations were :lna1y-

sed to deri\'e empirica1 formulae for estimating

density. They were of equal demity anci each was

('oIllprised of 1,000 members at plotted co-onlin-

ates \vithin a square area of 10,000 x 10,OnO unit~.

One of the 40 was a natural forest tree population

in the ~lanawatu District. North Island. The rc-

maining 3~) \\"l're simulated in a computer by gene-

rating sets of 1 ~()On co-ordinates by programmes de-

signed to induce uniformity, randomness or ag-

gregation in the distribution of meilibers. Of tlu's<,:
- -
] 2 were designed to span the range from uniform

to random whereas the remaining 2i tended from

approximately random to strongly Jggregated. Two

hundred samples of r", rn and I'm were measured

from random co-ordinates in each of thhe popu-

lations and at each of the 200 sample points the

Jlwmbns were counted within a circular plot vvhich

was made large enough to include an average of

four per plot. The sample plots were established

at the sample points primarily to check the density

of population members in thf~ vicinity of each

sailiple point.

Besides the check on d{'nsity~ the sampk plot

counts prO\'ide a 'itatistic of dispersion which senT

to rank the degree of lInifonuity or aggregation

in the populations. Since in this instance the mean

was expected to be four per p1ot, the variance

under Pois50n assumptions is four. and Ion s/ x, the

coefficient of variation. is 50. A lower value incli-

cates uniformity, wlwreas a higher \'alue indicates

aggregation. Sample ('oefhcients of the 40 popula.

lions are listed in column 5, crable 1.

The programme for controlling the degree of

uniformity allocated a proportion of mcmbers to

the grid intercepts of either a squarf' or triangular

lattice, and the remainder to random co~ordinates.

In the 12 such experiments. the degree of unifor-

Illity was graduated by lowering the proportion of

Illembers at lattice pcsitions from 961 (of the
] ..0(0) to 289, and correspondingly raising" the ran-

dom proportion. The evident correlation bet,,'een

the proportion of random members in these popu-

lations and the coefficient of \'ariation calculated

frem the 200 plot samples (columns ::>and 5. l'able
]) shows that a comprehensive gradient of distri-

butions was generated by this technique.

Random-to-aggregated populations, with speci-
rled dep:rc(:'s of clumping~ proved rcJatin'ly unpre-

dictable to compile. Uniform, random, and aggre-

gated clump centres vvere choscn. and \vith square

sub-units of three diH'erent sizes abeut these points

10; 50 or 250 melubers were placed in uniform,

random or aggregated groups. This technique was

used to obtain the 2i combinations of between-

dump distribution (Uni, Ran. Agg).. \vithin-dump

distribution (Uni, Ran, Agg) and clump size (JO.

SU, 250) (Table 1). Cenerally: a large number of

dumps endowed a population \\.itl1 only a mild

degree of aggregation. IIigher density within

clumps, and few dumps \vith mall)' individuals,

created a higher degree of aggreg"atjon. The most

severely aggregated populations were made up of

only four large dumps.. some of vddch \vere sub-

sequently found by mapping to overlap.

In early runs \vith the programme it was found

that many sampling points, particularly in aggre-

gated populations, fell closer to the edge of the pop-
ulation than to the nearest member. 'fhese sample

points \\"{'n' rejected: and new olles generated.



TABLE 1; Characteristics ('1 Computer PopulatiOllJ.

lA Uniform populations

No. of uniform No. of random Plot count CV%

Lattice members members E ~ 800 (plot

count)

Square . 961 39 797 12

Triangular 900 100 8D 27

Square 900 100 824 27

Triangular 78+ 216 B19 29

Triangular 961 39 824 :10

Square 75+ 246 7ao 30

Triangular 529 471 82H 35

Triangular 6"- 375 820 36_0

Square 625 375 7M +0

Square 529 471 824 41

Triangular 289 711 810 43

Square 289 711 7B6 44

IE Clumped. populations

Clump dis- No. of Distrilmtion ~().within Clump density P]ot count CV%

distribution clumps within clumps clumps per unit area E ~ 800 (plot count)

Voi 20 Ran 50 .08 807 48

Voi 20 Agg 50 .08 92::; 53

Natural forest population 933 53

Voi 20 Voi 50 .08 924 58

Ran 20 Ran 50 ? 859 59-
Uni 100 Agg 10 40 839 62

Agg 20 Agg 50 .08 1027 66

Ran 20 Agg 50 .08 953 67

Ran 20 Voi .\0 .08 869 79
Agg 20 Uni 50 .08 1022 80

Uni 100 Ran 10 40 789 80

Uni 4 Ran 250 .4 1094 88

Agg 20 Ran 50 .08 10.\.\ 88

Ran 20 Ran 50 .08 ij'r 95_0

Agg 4 Agg 250 .4 845 101
Ran 4 Agg 250 .+ 944 10.\

Agg 100 Agg 10 40 1009 105

Ran 100 Ag~ 10 40 877 109
Ran 100 Uni 10 40 837 I I I

Agg 100 Uni 10 40 1190 122
Agg 100 Ran 10 40 1180 124
Ran 100 Uni 10 40 859 127
Agg 4 Uni 250 .4 1073 132

Ag.~ 4 Ran 250 .4 1155 135
Uni 4 Uni 250 .+ 101+ 136
Ran 4 Uni 250 .4- 1003 146
Ran 4 Ran 2.\0 .+ 883 171
Uni 4 Agg 250 .4 706 178
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This had the insidious eA"ectof tending to lo:::ate
"valid" sample points within or near clumps, and

cause sampling to be (;oncentrated in regions of

the plane which contained higher, than' a\'erage

density. The severity of this effect \vas appreciated

when the plot counts were found to range from

about 800 (the figure expected from 200 samples

with a mean count of four per plot) to 1.200, and

when "this trend was found to be correlated with

the degree of aggregation as measured by coeffi-'
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cient of variation (plot count = 837 + '16.79
(CVp) ; r = 0.516; P 0.01, where CV,. = coefficient

of variation of plot samples). In other words~ rela-

tive to actual density in the vicinity of the sample

points, the population parameter was wrong by up
to 50 percent because of edge effects. Consequently,
estimates of density in the vicinity of the sample

points, calculated from (1,000 x count) /800, are
used as an appropriate estimate of true density of
each population.

TESTS OF THE 50 PERCENT CORRECTED POINT

DISTANCE TECHNIQUE

The estimating formula-

diD = 1.386 X 1.450-b",u,

,vhere buulx is the maximum of bt and b:! (Bat-

cheler 1971) 'vas used to estimate density of the

40 computer populations and yielded 33 estimates

within + 15 per cent of the parameter value (Fig.

1 ) . Although these are superficially reasonable

(they are nearly all within the range of error to
be expected on shortest distance theory if the pop-
ulations had actually all been random (Kendal
and Moran 1963)), two obvious problems arc dis-

played by the figure. Firstly, there is a clear res-
idual tendency for the corrected estimate to regress
across the expected value (1.0) as a function of
Nfjj ~r2. This suggests that, even in relatively uni-
fonn populations, the corrected 50 percent PDE
did not fully cope with dispersion-dependent bias.
Secondly, for seven of the populations, in which
aggregation was so severe that N f jj ~ r2 gave esti-

mates of only three to five percent of true density,
the "corrected" estimates arc still 50-75 percent
biased. A new regression formula calculated- from
the computer data itself gives-

(50'1< PDE)/D ~ 1.413 X 1.627.""'''

(r = 0.9459). This virtually eliminated perceptible
drift in the estimates (compared with that in Fig.

1), but made negligible improvement to the esti-
mates for the seven severely aggregated popula-
tions.

'These problems, and the over-riding objective of

finding a formula applicable to truncated dis.
tances necessitated further work. It was decided to

FIGURE 1. Values of density calculated b)" the

shortest distance method on the x~axis (d =
N/jj :::::rl,2) plotted against estimates from the COf-

rected 50 percent point-distance method, J,'-axis.

Uncorrected estimates, ranging from 2 percent to

188 percent of the expected value, are a measure

of non-randomness in the populations. 19 of the 40
"correctedn estimates are within + 10 percent, 28

are within + 20 percent, 33 aTe within ::t: 30
percent.

investigate initially the causes of aberration in

distances not. subject to any constraint and then

to test whether any solution could be applied to

truncated data.

. .

ESTIMATING lVITHOUT CONSTRAINT ON THE

DISTANCE SEARCHED

Here, the maximum likelihood estimate of

density is-

N/'Ir ~r2,

while bi (:::::rpf~rn), b2 (~rpf::Srm) and bmax

(the largest value of bl and b2) are under evalua-
tion as point-neighbour ratio corrections.

A semi-log plot of the bias of N/'ff'$r2 against

blllax (Fig. 2) shows a linear trend over the uni-
form-to-random range. \Vith increasing aggrega-
tion, however, the fit of points drops away in a
sickle shaped arc towards the bottom right of the.
figure. Clearly, within this range, bmllx is of

BIAS' UNCORRECTED ESTIMATE
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little use as a correction to the bias of the ,shortest

distance estimate.

FInURE 2. Three scattergrams and a regression of

lOR bias of Nj" ~rl':! on biliax (i), co-efficient of
variation (ii)', and the composite correction hased

C\.

on --- X \/b] (croJseJ) or Vb~ (circlc,fL
E(C'-j

,

giving AI and A2 resluctivel'}', (iii). The oPIJosing

sickle~slzal)ed arcs of bUlaxand CV against log bia,f

(free~hal1d lineJ) are evident in (i) and (ii). The

line in (iii) iJ calculated as mean regreSJion oj log

bias against Au".x, for 2B s'eleded - pOjJulation

sam/lies (see text).

The second scattergram in Figure 2 shows the

semi-log plot of bias against the coefficient of

variation of rp. It is easily seen that this scatter-

gram also displays a sickle-shaped arc of points, and
that they have the interesting property of mirrol'-

imaging the arc of the bm;!x correction. Indeed

for each of the 4.0 sample statistics, a "left-hand"
cast of bnm is faithfully mirrored by all extreme

"right-hand" cast of CV,_and vice-versa, or alter~

natively, both are neatly centred on their respective

correlation lines. Therefore, it seemed certain that

these t\\'o indices of dispersion could be combined

into a single pO'.\'erful index, correlated \\'ith bias

of the shortest distance estimate.

The scattergram of bias against CV passed

through Ion the Y axis at about 0.5 (Fig. 2). ""hen

Dr J. lL Darwin showed me (pers. comm.: that

this is nearly the expected value of CV for a

random population (V(4-~) I~ = 0.5227),
it was realised that both CV jE(CV) and b were

approximately 1 for the random ('~ase, that their

product would be approximately 1, that smaller

values would be indicative of uniformity, and that

larger values indicative of aggregation. It was sub~

sequently found by iterative and least squares tests

that CV IE(CV) X Vb",,,, formed a very good

straight-line scattergram against log of bias of the

point distance estimate. Defining these as 1\" 1-\2

and A1H:L~ when bJ, b:! and bulax poi.nt and

neighbour ratios respecti\'ely are u'iecl, the depen-

dent regression of log bias on Am:!x for all 40 popu-

lations samples is

diD = 2.i36 X 3.04l-A"'a~ (r = ..,('J.9R3)

as shO\\'n in scattergram (iii) J Figure 2.
HO\vever, this statement does not discriminate

between A J, A~, and Ann,x as the best choice for

correction of the bias of Ule point distance esti-

mate. There is virtually no diO'crence between

them in 28 of the samples, and, for these, At

would be chosen on grounds of relative ease of field

sampling. But in five of the 40 samples log bias

against AI lies closer to the general correlation set,
while in another three A:: lies closer. At this pre-

liminary stage of screening the behaviour of ,A

ag:linst bias it therefore seemed reasonable to re~

jcet smnples v.'here At differs m~rkedly (say 10%)
from 1\...

Silnilar consideration is required of the need to

reject SOllIe samples in which the density estimates

arc extremely biased. James (1971) has pointed

out that random sampling error in any corrected

estimate is likely to be positively related to var-

iance. Therefore, since point distance estimates as

1cw as only t\\'O to five pen.~ent of true density

were obtained fronl some aggregated populations,

the problem in evaluating At and A~ is one of

eva1uating the fidelity of a correction term which

is required to raise the point distance estimate by

up to 50 times the yield a reasonable value. Quite
small errors in sampling can conceivably be com-

pounded into an estimate which is grossly wrong.

This argument favours rejection of very biased

samples from the analysis.

Accordingly, twelve populations in which A}

differed frorn A~ by more than 10 percent, or in
which Nj,,~r,,'2 is biased by more than 80 percent,

were set aside from the list, and the mean regrcs-
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Point Distances,

H
..A.- ___

~

A* .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
.0 .3564 .3564 .3565 .3566 .3568 .:1570 .3571 .3575 .3577
.1 .3579 .3581 .3584 .3588 .3592 .3597 .3602 .3607 .3612 .3618 .3624
.2 .3640 .3630 .3636 .3643 .3650 .3657 .3664 .3672 .3680 .3688 .3696
.3 .3706 .3704 .3712 .3721 .3730 .3738 .3747 .3756 .3765 .:1774 .3784
.4 .3782 .3793 .3802 .3812 .3821 .3830 .3840 .3849 .3859 .3868 .3878
.5 .3875 .3887 .3897 .3906 .3916 .3925 .3935 .3945 .3954 .3964 .3974
.6 .3980 .3984 .3994 .4004 .4014 .1025 .4036 .4017 .4058 .4070 .4082
.7 .4113 .4095 .4108 .4122 .4136 .4151 .4167 AI84 .4201 .4220 .4240
.8 .4283 .4261 .4283 .4307 .4333 .4360 .4389 .4421 .4454 .4490 .4529
.9 .4533 .4571 .4616 .4664 .4716 .4772 .4832 .4897 . .4968 5043 .5125
1.0 .5227* .5214
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sion of log bias against Amax was calculated for

the remaining 28. Nfean regression, where

-'
b = b,., + lib".,

and a = ;- - b.;?".

(Simpson, Roe and Lev,,'ontin 1960) is taken as
a more appropriate regression than the dependent
form for log bias on Anmx, because the variables

are mutually dependent. These give-

dID ~ 3.473 X 3.7 I7-A..."" (,. ~ -0.997 I.

THE GENERAL FORMULA \VHEN A LEVI IT DISTANCE

(R) IS IMPOSED ON THE SEARCH FOR THE

NEAREST MEMBER AND ITS NF.lGHBOURS

'Vhen used for either truncated or unconstrained
measurements it is obviously desirable that the

estimating formula be basically of the same form,
that it should give a reasonable estimate of density

when even a small proportion of successful searches

are made within any given distance R, that it be

subject to few if any ."special case" rules, and it

should be reasonably easy to calculate.

Besides the semi-log approach introduced in

the previous section, alternative methods based on

polynomial regressions (James 19i 1) were ex-

plored, but ran into difficulties. 'Vhen no limit was
imposed onR, an extremely good regression esti-
mator was obtained from the 40 population

samples by his method. Taking -yAmHxas A', it is-

TABLE 2. Expected Coefficient of Variation of Point Distances, Calculated from an Empirical Cubic Curve.
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dID = 2.4847 - :J.3701 (A'I (I + A'I) + 1.2052
(A'/(I + A') )',

wilh R = -0.9948 (Fig. 3). However, when pro-
gressively smaller R limits were imposed, third
degree polynomials were required to fit a regres-
sion, and the constants changed almost unpredict-
ablv. I could find no wav to reduce them to a, .

simple estimator which could be used at any fre-

quency value which might be derived from field

data. Further, although the very high coefficient

of multiple correlation suggests the quadratic fit is

adequate for most samples in which no limit is

set upon RJ the transformation used in the regres-
sion engenders false confidence in its power to
correct' estimates from aggregated populations.

Hopkins' transformation of A' (i.e. A'I (1 + A') )

compresses the A' values for extremely aggregated

populations into a small region at the tail of the

curve (Fig. 3). Second, the curve is intuitively un-

desirable in that the line cannot produce negative

estimates, v..-hereas these are in fact fitted when A'

exceeds 0.96 - corresponding .to A of 4.9. Poly-
nomial methods were rejected on these grounds.

The semi-log regression model leads to a rela-

tively simple estimator. Only one special case was
found to arise (that of very uniform populations),

and the only statistic which is ponderous to calcu-

late is the E (CV) for data in which f is less than

1.

J. H. Darwin (pers. comm.) helped me to dis-
pose of this problem by calculating a set of ap-

,

I
\ log,. E(.\. ~c=-- 1.03187 + .48924f:! __ .7181 7f-1 + .60946£(;
'i

". , .

j
*Co1umn A, .10 steps of E",- calculated from measurements of 'a simulated random population. That for f = 1.0 is

lv (4.'!r)/1T. Bare .01 steps of E,.,- calculated from the cubic, regression equation based on the values of column A.



Coeffi.
dent of

Dependent Mean Corre'c-

regression of regressIOn tion

A. No Cons~raint on R hias on A - -
N £ a h a b

All populations, bias on A1 40 100 2,BI4- 3.281 2.956 3.376 0.976

AlJ populations, bias en A:? 40 100 2.706 3.059 2.801 3.119 0.983

All populations, bias on A",~, 40 100 2.736 3.041 2.836 3.102 0.983

28 selected populations bias on A",u: 28 100 3.459 3.705 3.743 :3.717 0.997

B. Constraint on R, giving specified 16 90 2.723 2.963 2.741 2.980 0.995

frequencies, and rejecting samples 27 70 ? 7-'2 3.104 2.B46 3.189 0.976_, J

specified in text ?f 50 2.427 2.638 2.47+ 2.681 0.984- ,
:{O 30 1.6:11 1.660 1.808 J.H05 0.867

30 20 1.39B 1.385 1.501 1.467 0.H59

*The constants ultimately used from these iterations were based on me-an regression for population samples in which i

Ai and A2 were nearly equal, and bias of the shortest distance estimate was less than -BO%.
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FIGURE 3. RegreJJion o{ bias o{ the 40 experimen-

tal populations against A' / (1 + A'), where
A' is the square root of (CV jE(CV)) y'b",,,,. The
regression line is the quadratic curve of

bia, = 2.4847 - 3.1401 (N/(I + N)

+ 1.2052 (N/(I + N))'
for which coefficient of multiple correlation is
-0.9948.

proximate E(CV) values by sampling a simulated
random population in a computer. These are

shown in 10 percent steps of frequency up to 90

percent in the second column of Table 2, and the

value for 100 per ('ent frequency is taken as

V (4-7t'f/;~- Approximate values for one percent
frequency steps were subsequently calculated em-
pirically by least squares, giving-

log.. E(CV) = --1.0319 + 0.4892f' - 0.7182£'

+ O.6095f",

as given in the body of Table 2.

!vlean regressions of log bias against Amnx \"ere

fltted to sample data arbitrarily restricted to in-

clude 20, 30, 50, iO and 90 percent of the point

distances. Population samples in which b I differed

by more than 10 percent from b:h or the bias ex-
ceeded 80 pcrcent~ or Al was less than 0.5 (see

belm and caption, Fig. 4), were excluded from

the analysis. Semi-log regressions described these

data very adequately, and it is dear that as f is

reduced towards zero, both ;' and b tend from

100 percent values towards 1 (Fig. 4, Table 3).

An objective measure of the rate of change

of these constants \vith change of frequency ap-

pears difficult to establish. Fitting the series as

dependent variables on f is not valid, becallse the

sllccessive estimates are not independent, and be-

cause variance of the constants must change \vith

f. However, since it is known that diD is unbiased

when f is infinitely small (but variance is very

large, a . b"'\ must also tend towards 1, and all
three tenns must equal 1 when f is zero. It there-

TABU: 3. Calculated Regression Constants ot Bias Against Correction Factors tor Unconstrained and Truncated
Jfeasurements of Distance*.
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fore seemed reasonable to propose an estimator of
the form-

diD = (1 + 2.4731) (1 + 2.7171) ".'m..

as a general estimator when At ::C= A2. As shown

by the regression lines in Figure 4, this turned out
to be a good empirical proposition.

When A2 > A1, use of Az as the exponent over-
estimated true density of the aggregated popula-
tions, and some natural aggregated populations,

yet to be described, by as much as hvo to three
times. Conversely, Al as the exponent underesti-
mated true density. Subsequently, in attempting

to bring these difficult cases into linej it was found

bv trial and error that the mean of the two esti-.

mates was consistently closer to true density, s~

--- (1 + 2.4730 [ -A,. -.\~
](tI!J))=- -- 0+2.7170 +\1+2.i17f),

becomes the basic general est.imator wherever At

exceeds 0.5.

CORRECTION STATISTIC: A

FIGURE4. Log bias against Amax, for frequencies of 100, 90, 70, 50, 30 and 20 percent. The scales of the

abscissae are moved in steps from left to right to separate the points for each frequency. The calculated

regression lines are from equation 3 (assuming At = A~), and clearly show the pivoting of the regression

lines from maximum slope b and highest a intercept at 100 percent f, towards zero slope and a intercept

at 1, as frequency drops towards zero (right side). Displacement of values (slashed symbols) at the top

left of each set. (less than 100 percent f) show the asymptotic nature of Amax in uniform populations

( A < 0.5). These values were extracted and uJed to calculate the quadratic equation for uniform
populations.
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As shown in Figure 4, six of the point distance
c;;timates, drawn from uniform populations in which

A1 < 0.5, give log bias -AlJlUx intercepts which
depart abruptly from the regression line indicated

by the other 34 values. These represent the be-
haviour of uniform or nearly uniform populations
and appear to form the only special case of the
method for which a basically different calculating
formula is necessary. This arises in uniform popula-
tions because f]l must always be less than the dis-

tance between neighbours. In the case of the grid

square lattice distribution, fll cannot exceed 0.707

of the grid distance; within a triangular lattice it

cannot exceed 0.625 of the grid distance. Conse-

quently, imposition of any limit R on the search for

rp and rn effectively makes all ru's greater than

any r]l' Therefore

". "N/ " ,_ll'n- _rnp'

(i.e. bi) tends rapidly towards zero, and is a
measure of asymptotic behaviour of the index of

dispersion. The data for these populations were

therefore extracted and an independent regression

of the bias of the estimate was fitted as the depen-
dent variable against frequency, giving-

dID ~ 1.0065 + 0.340lf + 0.42351'.

I ~ provides a simple means of correcting the bias
of the point distance estimate in these cases, and

the need to employ it is invariably identified by

AI < 0.5.

SUMMARY OF THE CALCULATING FORMULAE

The follov.'ing brief summary draws together the

formulae used in succeeding sections of this paper.

( 1) The shortest distance estimate is calculated
from--

u

d = pl. (~r,.' + (N - p)R').

"
(2) The correction terms Al and A2 are calculated

from-

Al = CV /E(CV) V ~rl'n2N/~r"p:J

A2 = CV /E(CV) V l:r"m2N/2;r",p2n.

(3) If AI > 0.5--

-- (1 + 2.47,H)
[ -A, -A~

](dID) = 2-'--' (1 + 2.717£) + (1 + 2.717f)

01', when Al = A2,
diD = (1 + 2.4731) (1 + 2.7171)-"'.

(4) If AI < 0.5,
dID = 1.0065 + O.HOlf + 0.42351'.

TESTS WITH PAPER DOT AND FIELD

POPtTLATIONS

So far, the formulae given in the above sum-

mary have been tested by the writer, colleagues at
this station and students of Christchurch Teachers

Training College on 29 populations for which

density was also determined by plot samples or
total counts. Of the 29, 11 were simulated on

paper and 18 are field populations. Thirty-seven
independent distance measurement experiments

have been undertaken in them. As shown by the

following list, two populations - a square chain

area of "the mountain daisy (C elmiJia Jpectabilis),

and the pines of Compartment 2 at Ashley State

Forest - became favoured experimental subjects.

Efforts were concentrated on the daisy population

because its intense clumping posed the first en-
counter with extremely biased shortest distance

estimates, and ultimate recognition of clumps with-
in clumps and the use of A2 (described as second-

order aggregation by Batchelor and Bell (1970)).

The pine plantation became favoured because it re-

presented a typical production forest inventory pro-

blem, and because estimates of density were avail-

able from forest inventory records. The compart-
ment lies across ridges, slopes and shallo\\" gullies,

with concommittent gradients of tree density and

size. In addition, it contained thinning trials, exten-

sive gaps caused by storms and other gaps in

s~Tub-choked gullies.
.

The characteristics of these populations and the

number d distance sample points used to sample

them are summarised in the following list.

Paper dot populatiollJ

(1-3) Three uniform populations simulated by <\

grid square of four points within which point
distances were measured from random co-or-

dinates. The grid distance is the neighbour dis- i

tance (sample sizes 100, 200, 200).
(4-5) Two random paper dot populations of 400
and 500 members in which three digtance
samples were taken from systematically spaced
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points on randomly chosen lines, (sample sizes

153, 159, 170).
(6-11) Six aggregated populations of 360 to 600

members, compiled by arbitrary clustering pro-

cedures (Batcheler 1971) and sampled from sys-

tematic points on random lines (sarnple sizes 79,
97,112,119,147,152).

Natural populations

( 12) Thre,~ seperate experiments on random lines
in a final crop plantation of Pinus radiata

(Compartment 2, Ashley State Forest), in which
an independent estimate of 346 :t: 20/ha (P =
0.95) was obtained ~y counts within circular
sample plots (sample sizes 100, 253, 348).

( 13) One experiment using systematically spaced
points on random lines in thinned P. radiata on
a dissected slope (Compartment 4, Ashley State
Forest), which was estimated (692 :.t 59 fha,
P = 0.95) from counts within 56, 0.04 ha plots

(278 distance samples).

( 14) An unthinned plantation of P. nigra which
had suffered extensive natural mortality (Com-
partment 66, Eyrewell State Forest), which was
estimated at 1132 + 84/ha (P = 0.95) from
counts on 38, 0.07 ha plots (sample size 129).

(J5-16) Two experiments in a naturally regeriera~
ted stand of P. radiata (Compartment 68, Bal~

moral State Forest) which had been thinned

twice, and marked for final crop thinning. The
total stand was estimated at 677 :t: 47/ha (P =
0.95) on 56, 0.08 ha plots. The entire marked

crop had been tallied at 326 trees/ha as a
check against calculated specifications for the

crop. Fifty-six sample plots gave an estimate of
341 + 32/ha (P = 0.95). Both total stand

and marked crop were estimated by distances,

on 10 random sample lines (292 distance

: samples for both total stand and crop).
'( 17) A thinned stand of P. radiata at Tiritea Re~
j serve, Mana\\'atu, in which all trees of the

i sampled area were counted (200 distance
.

samples).

Ki8) A natural population of Beilschmedia [£lwa

i at Tiritea in which all trees of the sampled area

!
were ~ounted (200 distance samples).

( 19-21) Three populations of indigenous beech

I
(Nothofagus spp) at. Makahu, Kaweka State

.

Forest, vVellington, and Craigieburn State For~
est, Canterbury, in which all trees were counted

(sample sizes 134, 200, 234).

(22) A single experiment in a 405 m2 area of
dense hard fescue tussocks (Festuca novae~ze-

landiae) at Craigieburn in which all tussocks
were counted. Distances were sampled on a sys-
tematic grid (sample size 100).

(23) A single experiment in a 405 m2 area of har.d
fescue tussocks, patchily distributed across an
area dissected by erosion pavement. All tus~
socks were counted, and distances were sampled
on a systematic grid (100 samples).

(24) Six different experiments in a 405 m2 area
of C. fPectabilis. All rosettes were counted, and
distances were measured from both the centres
and' intercepts of a systematic grid, and from

random points (sample sizes 100, 100, 100, 121,
200 and 200).

(25-26) Two experiments to estimate density of
rabbit faecal pellets at Cairnhill, Central Otago.
Each consisted of a single line of 100 systemati-
cally spaced points on a line, at each of which
pellets were counted in a 0.09 m2 plot (1.98 +
0.85 and 2.52 + 1.08/Ill', P = 0.95) and dis-
tances were measured (sample sizes 100. 100).

(27-29) Three experiments with populations of
hare faecal pellets at Harper-Avoca field station,

Canterbury. Independent counts were made in

100 0.09 m2 plots giving 7.65 :t: 1.98 m2, 5.94

:t: 1.62 m2 and 10.17 :t: 2.79 m2 (P = 0.95)
(distance samples 100, 100, 100).

Overall, distance sample size averaged 156

points, and ranged from 79 to 348.

Results of population experiments

Uncorrected and corrected estimates were calcu~

lated for approximately 15 percent steps of the
frequency range 25~I00 percent. Eight others, rep~

resenting lower frequency values, \vere c:1lculated
from the data of the three biggest experiments. All

are summarised as a fraction of the parameter or

sample plot estimate (i.e. the expected value is 1.0)
"

,

in Figures 5 and 6, and the accumulated depar-
tures frem the expected values are shown in Table
4.

.

Estimates obtained by equation (1), the shortest

distance estimator, efTectively indicate the general



Difference
between Uncorrected Corrected
parameter estimates estimates

and No. Accumu~ No. Accumu-
estimate within lated within mulated
(:t%) range % range %
1-10 24 17.8 80 59.3
11-20 If 28.1 23 76.3
21-30 18 41.5 23 93.6
31-40 12 50.4 6 97.8
41-50 8 56.3 2 99.3
51-60 7 61.5 0 99.3
61-70 8 67.4 0 99.3
71-80 16 79.3 1 100.0
81-90 19 93.3 0 100.0
91-100 9 100.0 0 100.0
Totals 135 135
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distribution of the populations (Fig. 5). Only five
of the 36 results at 100 percent frequency lie with-
in :!:: 10 percent of the expected value, and could
accordingly be considered random or nearly so.
Thirteen of the remainder were uniform, giving

estimates up to almost twice the expected value,
and 18 were aggregated, giving values ranging

TABLE 4. 135 Uncorrected (left) and Corrected (right)

Estimates Derived tram 37 Experiments with 29 Popula-
tions.

FIGURE 5. Uncorrected estimates of density of paper

dot and natural populations (from equation 1),
plotted against frequency.

,20
- .

.40 .60
POINT FREOUENCY

FIGURE 6. Corrected estimates of density of paper
dot and natural IJOpulations, from equations 2, 3
and 4 as appropriate. Those calculated from the

quadratic equation are shown as asterisks.

down to five percent of the expected value. As

expected on theoretical grounds, the biases in these
estimates are progressively smaller as f diminishes
towards zero (left side of Fig. 4).
In contrast, the corrected estimates obtained from

equations (2) and (3) are strongly grouped, and
with only three exceptions among the 135 calcu-
lated values all are within +40 percent of the ex-
pected value (Fig. 6). By accumulating these as de-
partures from one, 59 percent lie within + 10 per-
cent, 76 percent within:!: 20 percent, and 93 per-
cent lie within + 30 percent of the expected value
(Table 4). This empirically infers that there is
about a 93 percent chance of an estimate being
within + 30 percent of the true population value,
provided an estimate is based on at least 30 posi-.
tive records from 100 or more sample points.

DISCUSSION

Density

In pursuing this study there has been no point
in lamenting that the sampling distributions of the'
distance measurements have not been derived from
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theoretical considerations. Rather, given the for-

midable nature of the theoretical problem, the evi-

dence that many different distance functions yield

a meausre of non-randomness (Hopkins 1954,

Moore 1954, Holgate 1965a and 1965b, Eberhardt

1967), and given evidence that distance ratios

can be used in non-random populations to correct

dispersion-dependent bias of a density estimate

(Morisita 1957, Batcheler and Bell 1970, Batcheler

1971, James 1971), there has been ample justifica-

tion for digging into the problem from every

imaginable angle.

Considerable licence was employed in accepting
or rejecting samples simply because the objective

was to develop an empirical function which is free

from gross sampling problems. The coefficient of

variation, the rm distance and the quadratic re-

gression approach to estimating uniform popula-
tions from truncated distance measurements. were

progressively brought into the picture as a tedious
string of analyses whittled away at the obvious re-

maining errors. The only completely subjective
element in this process has been the decisions taken

as to whether occasional "maverick" estimates in-

dicated some fundamental cause worth pursuing,
or whether they could be written off to chance.

Nonetheless, like any empirical model, the distance
formulae presented must be presumed to carry

some unmeasured taint of the data from which

they have been derived.

At present, the only real test of their worth is the
evidence from the 29 paper dot and natural pop-

ulation experiments. This is sununarised graphi-

cally in Figures 5 and 6 and numerically by the
statement that 93 percent of the corrected esti-

mates He within 30 percent of "true density"
f(Table 4) - a satisfactory result for most prac-
!tical purposes. Beyond this, any statement about

the reasons why seven percent of the estimates re-
Imained intractably bad becomes inseparable fronl

an object lesson in the pitfalls of experimental in.
, . .
,l/estJgatJon.
I
Among the estimates for paper dot populations,

where there is of course no error in the density

?arameter, 13 percent of the corrected distance
~stimates lay outside the range which would be
'~xpected by chance from peint distance theory,
Ilssuming the populations to actually be random. *
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These unacceptable values came from intensely
clumped populations in which, as with the com-
puter-simulated populations, considerable numbers

of sampling points had to be declared invalid be-

cause they were closer to the edge of the popula-

tion map than to the nearest member. However~

if the populations were assumed to lie within re-

gions of the respective maps such that no sampling
point was nearer to the edge than to the nearest
member, the estimates in all except one instance
were within the limits for a random population.

The field populations pose a much more mixed
bag.

In one p;ne plantation (Eyrewell, Cpt. 66),

where distances gave an ,estimate of only i4 per-

cent of the plot-estimated density, it was subse-

quently learned that double~leader trees, forking
below 4 ft. 6 in., are tallied as two trees in routine

inventories.

Among the other natural populations, particuw

larly aggregated ones, three common problems were

encountered. Some study populations were so small,
or population density was so low, that several

measurements were made to particular members
and their neighbours or, particularly in two experi-

ments (one beech forest, one eroded Festnca area) ,

several measurements were made across the deline-

ated population boundary to reach the nearest

member. In experiments with hare pellets, which

yielded distance estimates of 58-69 percent of the
plot values, the possibility of a significant degree
of clustering within primary clusters (second order

aggregation) was overlooked. This was later rerag-
nised to be a normal attribute of pellets which are

mostly voided in groups in preferred feeding areas
of the range.

The most common problem, however, was large

probable limits of error of the sample plot counts.

*x2
" ,
= 2d

] )
1f' ~ rr'~ (Kendall and Moran

]~f. (upper 01. oVler

1963) where d and d
]

are the upper and lower
upper owel

confidence limits of d, and X2 is Chi-square for 2N'
2Kdf

degrees of freedom.
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These 'were ::!::: 14, 26, and 71 percent of the

means in the hare pellet experiments and -+- 43
percent in both of the rabbit pellet counts (P =
0.95). SucH broad confidence limits for the esti-
mates clearly inhibit any precise statement about
relative or absolute accuracy of the distance esti-
mate compared with plot counts: both may be

right; one may be right and the other wrong; both
may be equally wrong. The only definite proof is
yet more testing.

Note on the index of non-randomness

If bias of the point distance estimate is a func-
tion of dispersion as measured by departure from
the Poisson case, and if, as concluded above, the
corrected estimate is unbiased, then Al and A2

must be measures of non-randomness. This hypo-

thesis cannot be tested with the data from field

populations because in non-random populations
S2/X may be unpredictably influenced by the

choice of plot size (Greig-Smith 1964, Kershaw

1957, Southwood 1968, Pielou 1969, Iwao 1972).
On the other hand, since the computer-simulated

populations were nominally of equal density (ig-

noring edge effects) and since density w~s sampled

by plots of equal size, it was expected that A] and

A:! would be correlated with variance, or it::; dimen-

sionless statistic, coefficient of variation. For the

28 populations in which A2 differed from Al by less
than 10 percent, their geometric mean, -

Ag= -.0075 + .0203 CV,,,

or, within the error limits of regression, CV p=50Ag

i.e. Ag is a linear function of th'e square root of
vanance.

. -
This attribute of A is a particularly useful meas-

ure of non-randomness, because it can be estima-

ted in unknown populations by the single-stage dis-

tance sampling method without need for choice of

the sampling unit. The size of the sampling unit

(rll, rn, Tm) is automatically related to density of
the population. It is therefore more versatile than

dispersion indices derived from, bounded plot

sampling because, as shown by Pielou (1969) and

Iwao (1972), even powerful indices such as Lloyd's

(1967) index of mean crowding" and Morisita's

(1959)" 18 index cannot be'presumed unique to the
population without analysis of a series of plot sizes

sufficient to shm\" that all or nearly all of at

least the smallest plots lie completely within any

density phase. Furthennore, these indices are
known to be valid only if populations oscur in

randomly distributed patches of different density

phases, within which the members of a patch are
randomly distributed.

The values for Al and A2 calculated for the

paper dot and natural populations are summarised
in Table 5 with their corresponding uncorrected

and corrected density values, to illustrate the spec-

trum which can be expected from a wide range

of biological populations. U nifonn grid square

populations are characterised by A < 0.45. Pine
plantations, in which the original grid distribution
is broken by silvicultural thinning, natural mor-

tality and such irregularities as scrub-choked gul-

lies, give A in the order of 0.6-0.8, tending to

approximately 0.9 in relatively uneven stands.~'

A1 exceeds 0.95 (the average value for ran-
dom p:)pulations from equation (3)) in aggre-

gated populations. As aggregation intensifies to the
degree exemplified by large mats of Celmisia ro-

settes, and by rabbit pellets chunped into "pill
heaps" related to territorial display, Al is in the

order of 2.5, and A;? may be as high as 3.5-4.

"

\Vhen R is set such that f is less than 100 per-
cent, Al and A2 differ from the 100 percent value

according to the pattern of the population. In uni-

fonn populations, it rises rather abruptly from zero

as R is raised to the extent necessary to take in the

unifonnly spaced neighbours. In aggregated popu-

lations however, A may rise or fall as f (and R)

increases, in opposition to the effect of pattern on

the point distance estimate of density. As shown in

Figure 7 where six characteristic patterns of the dis-
tance measures are shown against f, it appears to:,

be impossible to derive a unique index of non-,

randomness from truncated distance measurements.

Nevertheless, the broad pattern of deviations from
randomness are usually evident by A > or < 1

when f is 30 percent or more, particularly if popu-;
lations are compared by the data for a common

frequency.

I
':"One traverse linz through a recently studied comparti
1:1cnt of P. nigra which had been badly influenced by frosj
"and scrub-competition gave At = 1.0'1, suggesting (

slig"htly a"~~re~ated distribution. " I
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Field practice and sampling requirements

There are several "tricks of the trade" in estima-

ting density by this distance technique. Sampling

at systematic intervals on randolll lines is advocated

because of the speed with which sample points can

be objectively located. Each line of points is then

considered as a single replicate and variance and

confidence limits of the mean can validlv be calcu-,
lated by normal distribution techniques (.Jowett

1967). However, if density follows some discern-
ible gradient along the line, or the line traverses
a patchwork of density and dispersion phases, a

single estimate of density for the '.vhole line is rarely
unbiased. So far as can be judged from present

experience, this problem is best countered by sub-
dividing the line into relatively homogenous units

(strata?), calculating the density for each unit,
and combining them into a single estimate for the

line by weighting according to density and the

FIGURE 7. Six examples of the mag!1i~ude and

trend of Ai and A2, uncorrected estimates a1ldcor-, . .. . . "'-'

reeled estimates, illustrating patterns which can be
;

expected in biological populations.

number of sample points in each unit. The weight-
ed mean is then used as the replicate. The need to
subdivide in this way is invariably indicated by
ordering the point-distances from smallest to largest
and calculating about four estimates at uniform in-
tervals of f. A substantial decline of corrected esti-
mates associated with increasing f usually suggests
a polymodal distribution of distances, and the ad-
vis~biIitv of subdivision..

Of course, it is relatively difficult to estimate

density of sparse populations, particularly if mem-

bers cannot easily be seen from the sample point.

For a given effort, hO\\.ever, it is usually advan-

tageous to keep R relatively Hnal! (say, large

enough to give f = 30 percent or more) and con-

centrate the available sampling effort on estab-

lishing a large number of samp!c p:>ints. '1'11;5 re-
commendation arises from several inten oven as-

pects of behaviour of the distance equation. First,
since the distribution of point distances is root-

skewed, a very large increase of R - is usually re~
quired beyond the modal distance to measure the

large distances at the "tail~end" of the distribu-

tion. The effort is rarelv worthwhile; because "tail-. . .

end" distances, of large value, often unduly dis-

turb the estimate of density, and, when large R

is employed, the resulting estimate is more severely

biased and requires a fODllidable order of correc-
tion (see, for example, Fig. 7E and 7F).

The required number of sample points thercforc-

differs according to the pattern of dispersion, and

ease of sighting members of the population.

The estimate for any replicate should be based

on at least 30 measurements of rpJ so that N would

norrnally be designed to range from about 30 for

a replicate of a' uniform population of large en-

tities such as trees (and no R limit \Nould be set)

to about 100 for a sample of aggregated popula-

tions where Al exceeds about 2, or members are

too difficult to find at distance from the sample

point (so f may be 0.3 or even less). ''''hen variance
between .the replic;ates is not large, it will turn out

that about five'replicates wiII be irequired to yield
an estimate with less than' + 10 percent probable-.

error at 95 percent probability. Accordingly, 1~0:"

500 -p distances, distributed over'about five repli-
cates constitute :in-adequate sample under' average~

conditions. But -it is imperative- that these- samples'
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Type of population Unc(;rrcded C{Irrccted CV
Paper dot Samples estimate cstimatc A, ~., (plots). -
Uniform grid 100 1.930 1.040 0.472 - -
Uniform grid 200 1.940 1.020 0..168 - -
Unifcrm grid 200 1.760 0.994 U.4:J6 - -
Ranrlcm t SI sample 153 1.212 1.09B O.B82 - -

2nd sample 159 0.950 0.887 0.905 -- -
Random 170 U.994 0.953 0.926 - -
Aggrega ted 79 0.258 0.956 2.056 - -
Aggregated 97 0.24-3 1.146 2.142 - -
Aggregated 112 0.712 1.309 1.127 - -
Aggrcga led 119 0.:-\46 1.()89 1.7"7 1.876 -
Aggregat(>d to,)

11.:1:<1 1.167 1.920o. -~ -
Natural populations
Pine plantation (Clp. 2) 100 1.239 1.0HlI O.H5B - )
Pine plantation (Cpt. 2) 253 1.538 1.040 0.6.\9 - f 31
Pine plantation (Cpt. 2) 3411 1.064 1.043 0.942 - J
Pine plantation (Cpt. 4) 27a 1.109 1.055 0.920 - 36
Pine plantation (Cpt. 66) 129 J,l4-5 0.735 0.619 - ??

Pine plantation (Cpt. 68) '19') 1.219 0.920 a.HZ - 26. .
Pine plantaticlI (Cpt. 6B) 292 1.:13:1 1.014 0.749 3-- >
Tiritea pinc plantation 200 1.467 1.174 0.750 O.B2:1 -
Tirite<! tawa 200 0.775 0.H84 0.884 - -
Makahu heech forest ZOO 1.01<4 1.117 0.9111 - -~
Craigiehurn beech forest 200 0.630 U.634 0.952 0.973 --
Craigieburn hcech forest 200 O.BOO 0.956 1.089 1.099 --
Ewded FestuCil 100 0.369 1.363 1.956 - -
Dense Fcstllca 100 11')" 1.0]5 0.1179. ~J - -
Celmisia spec. 100 0.094 0.9B3 2.465 2.9SB

]Celmisia ~IK'C. 100 0.117 1.013 2.252 2.997
Celmilia spec. 100 O.UBH 0.743 2.609 2.569

r
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Celrnisia spcc. 121 0.083 O.Bil 2.'102 2.991
Celmisia ~pcc. 200 0.096 0.796 2.468 ') 66-

I
~. ,1

CelmiJia spec. 200 0.090 0.609 2.225 2.5iH J
Rabbit pellets 100 0.062 1.121 2.90:; :J.3i5 104
Rabbit pellcts 100 0.046 1.761 3.592 3.H70 104
Hare pelicts 100 0.296 0.694", 1.609 - 132
Hare pellets 100 0.19:1 O.ilO", 1.953 -- 132
Harc pellets 100 0.476 0.581* 1.110 - 136
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TADLE 5. Summar)' of data at f = 100% for the Paper Dot and Natural Populations to Show A values for Different

Kinds of Populati{,ns. Bias of Uncorrected Estimates, the Corrected Estimates and Coefficient of Variation of the True

Values ",are also Tabulated.
".'~-',', ,"

"
":><". "

::: rOt. should ha\'c been lYIea~llred, see text.

be well spread throughout the population. As with
the traditional pilot trial practi(~e of step-wise

analysis of counts within bounded plots to deter-
mine what constitutes an adequate sample, there is

no surer guide to distance sampling requirements,

than circular reasoning from results already in

hand.

Basically, a large though undefinable number of
sample points must be advocated for surveys of
unknown populations because detennination of the

proportions of different density phases which makes
i

up the total is invariably the paramount task of
i

an\' densit\' assessment.. .
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ERRATA:

In para. 2 p. 139 it is stated

estimates of density, derived from

that the average of two

and D =
Z

-A
d/ab

1
,

-A .

d/ab
2
,

D1 =

consistently . gave the most accurate estimate for the population;

i. e. t 5 = (D1 + D2)/Z.

However, the formula given on p. 139, and in the summary of

calculating formulae (No.3. p. 140) for calculating this average,

.is wrong. It should be

5 _ J
<

-A
1

(d(b +

-(A1
ab

-A
b 2)

+ A )
) .

2

which simplifies to

- d
D =

2a
(bA1 + bA2)

Perpetration of this blunder in print is regretted.


