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SUMMARY: Forty computer-simulated populations were analysed to derive formulae for
estimating density of populations from a set of distances from sample points to the nearest
member, from that member to its neighbour and from that neighbour to its nearest neighbour.
Distances may be truncated or unlimited.

The formulae were applied to data freom 11 paper-dot and 18 field populations in a total
of 37 experiments. Fifty-nine percent of the corrected estimates were within 10 percent of
“true density”, 76 percent were within 20 percent, and 93 percent were within 30 percent.
Most of the unacceptable estimates were attributable to sampling difficulties (particularly in
paper dot populations) or sampling errors of the “true density” values.

An index of ncn-randemness is an intrinsic part of the density estimating formula. This
index is described, and values for the experimental data are given to illustrate the spectrum
which can be expected in biological populations.
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INTRODUCTION

An estimate of a population’s density which is
based on distances from sample points to the
nearest member is biased if the population is not
randomly distributed (Kendal and Moran 1963,
Pielou 1969). If population members tend to be
uniformly spaced, the estimate will be high, where-
as if they are distributed in clumps the estimate
will be low (Cottam and Curtis 1956 Pielou 1959,
Lvon 1968 ).

Recent work (Batcheler and Bell 1970, Bat-
heler 1971, James 1971) has shown that these
olases are inversely related to ratios which can be
lerived from measurements from the sample point
o the nearest member, and from that member to
ts nearest neighbours. This function is easily vis-
iahised by comparing a perfectly uniform popula-
ion with one which 1s extremely aggregated

clumped). In the former case, which is analogous
o the position occupied by a person in a square
oom, the distance from any position in the room
o any corner must be less than the distance from
hat corner to another. Consequently, the average
[ any set of distances from random positions in
1e room, divided by the distance between neigh-

bouring corners, will produce a quotient which is
less than 1. The small quotient can be used to
“knock down”,| and reduce, the high biased estim-
ate derived from position-to-corner distances. Con-
versely, if it is supposed that compact clumps of
population members occur at each corner of the
room (1.e. the population is aggregated), the aver-
age of a set of distances from random positions to
the nearest member of any clump (r,) will be larg-
er than the average distance from cne member of
a clump to its nearest neighbour (r,). This quotient
of r,/r,, greater than 1, can be used to raise the
low biased estimate which is characteristic of ag-
gregated populations.

The idea of using these ratios to correct bias
was developed earlier (Batcheler and Bell 1970,
Batcheler 1971) to give one of many possible equa-
tions for estimating density. The equation was
called the 50 percent corrected point distance esti-
mator:

d/D = 1.386 X 1.450b
Where d is the biased estimate calculated from

R
p/m (21, 2 + (N-p)R2),
0
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R is a distance large encugh to include a population

membcr at 50 percent of the sample points, N is the

tctal number of sample peints. p 1s the number of
distances measured within R, r, 1s a distance less than

R, and b is the ratio of the sum of all r,’s divided by

the sum of all r’s).

The equation was tested on only 13 populations
at the time the earlier papers were published. Des-
pite this rather superficial treatment., some fea-
tures, particularly the use of a truncated distance
formula for d, and the use of joint point and
nearest-neighbour distances as an index of disper-
sicn (rather than independent point and neigh-
bour-distances as employed by Hopkins (1954)
opened up some useful possibilities in the quest to
derive a simple yet reliable method since Cottam
(1947) drew attention to the use of distance tech-
niques for woodland assessment.

No new theoretical papers have come to notice
in the mtervening three years to push the issue any
further. Indeed, it seems clear enough from the
forbidding assumptions which attend formal math-
ematical treatment of distance functions (e.g. Clark
and Evans 1954, Monisita 1957, Perrson 1962, Hol-
gate 1965, Thompson 1956, Pielou 1969, Eber-
hardt 1967). that formal methods applicable to
populations of which the dispersion parameters
cannot be easily defined, will be difficult if at all
possible.

Meanwhile, James (1971) has further developed
several aspects of distance sampling by study
of 40 computer-simulated populations. He chose
26 measures of dispersion based on distances [rom
point-to-member and member-to-neighbours, and
tested their capacity to correct the dispersion-de-
pendent bias of nine estimates of density based on
first and second moments of the nearest member.,
second nearest member, and joint nearest neigh-
bour. Using polynomial regression methods he
found three equations for correcting bias for
which the co-efficient of multiple correlations, R,
exceeded -0.98. In these, the ratios used were:

},.3,/;:,.3. S rwe/3Sret and 2 /S rpee

(r,. 1s the second nearest member to the sample
point ).

That is to say, of 26 x 9 combinations of density
estimators and corrections which were tested, the
best two were based on transformations of the joint

peint and nearest-neighbour distance technique
published earlier.

These results, and the daunting quantity of stat-
istical and computer work they represent, are in
three senses the keystone of this paper: they pro-
vide very much stronger evidence of the utility
of the joint point-distance — nearest-neighbour
distance function than was formerly available: they
provide experimental data which enabled me to
identify a serious lack of sensitivity of the earher
model to certain patterns of aggregation: lastly.
they facilitated development of a density estimating
formula for the field situation where, for practical
reasons, a limit has to be imposed on the distance
cearched from the sample point to the nearest mem-
ber and its sequential neighbours.

SAMPLING AND SAMPLE StaTistics USsep

Before going further, it is useful to outline the
strategy of the sampling technique and to sum-
marise the statistics to be used in remaining sec-
tions of the paper.

A number of sample points, N, are located at
systematic intervals along random lines, or com-
pletely at random, and the observer measures the
following distances within R, a chosen maximum
distance: -

(a) 1y, if the nearest member is distance R
or less from the point. r, 1s meas-
ured, and p is the number of such
measurements made:
if the member nearest to the sample
point is found at R or less, the dis-
tance from that member to its near-
est neighbour is also measured pro-
vided 1t 1s R or less, and n is the
number of such measurements;
if the nearest neighbour is closer than
R te the point member, the distance
to its nearest neighbour (exclusive
of the member nearest to the
sampling point) is measured up to
the linmt R, and m i1s the number ol
such measurements.

These quantities are used to calculate the fol-
lowing statistics, most of which are described i

(b) r,,

(€) Tina

detail in Batcheler and Bell (1970 ) and Batch-
eler (1971):
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i-- p/N,
point distance frequency within R:
i
d=p/=» (X r,® + (N-p)R2),
o
the maximum likelihood estimate of density (in
Batcheler, 1971). which tends to
N/mr 2 ry-
as R increases:
[N 4
b1 = 2 r, n=N/2 r,p?
an empirical measure of dispersion which 1s sensi-
tive to simple clustering in a population. and which
tends to
o Tof 2l
as R Increases:
" I
bo=2X r,m=N/X r,p-n.
0 0
an empirical measure of dispersion sensitive to clus-
tering within clusters, which tends towards
2rp/ 2m
as R increases: and
CV =V p(2 n=—(2r,)2/p)/ 2y,
the ccefficient of variation of the point distance
(syn. Shortest distance, Morisita, 1954).

CHARACTERISTICS OF JAMES™ Porurartion Darta

As mentioned earlier, 40 populations were analy-
sed to derive empirical formulae for estimating
density, They were of equal density and each was
comprised of 1,000 members at plotted co-ordin-
ates within a square area of 10,000 x 10,000 unats.
One of the 40 was a natural forest tree population
i the Manawatu District, North Island. The re-
maining 39 were simulated in a computer by gene-
rating sets of 1.000 co-ordinates by programmes de-
signed to induce uniformity, randomness or ag-
oregation in the distribution of members, Of these.
12 were designed to span the range from uniform
to random whereas the remaining 27 tended from
approximately random to strongly aggregated. Two
hundred samples of r,, r, and r, were measured
from random co-ordinates in each of these popu-
lations and at each of the 200 sample points the
members were counted within a circular plot which

was made large enough to include an average ol

four per plot. The sample plots were established
at the sample points primarily to check the density
ol population members in the vianity of each
sample point.

-
» -
-

Besides the check on density, the sample plot
counts provide a statstic of dispersion which serve
to rank the degree of uniformity or aggregation
in the populations. Since in this instance the mean
was expected to be four per plot, the variance
under Poisson assumptions is four. and 100 s/X, the
coefficient of vanation, 1s 30. A lower value ndi-
cates uniformity, whereas a higher value indicates
aggregation. Sample coefhicients of the 40 popula-
tions are listed in column 5, Table 1.

The programime for controlling the degree of
uniformity allocated a proportion of members to
the grid intercepts of either a square or triangular
lattice, and the remainder to random co-ordinates.
In the 12 such experiments. the degree of unifor-
mity was graduated by lowering the proportion of
members at lattice pesitions from 961 (of the
1.000) to 289, and correspondingly raising the ran-
doin proportion. The evident correlation between
the proportion of random members in these popu-
lations and the coefhcient of variation calculated
frcmn the 200 plot samples (columns 3 and 5. Table
I} shows that a comprehensive gradient of distri-
butions was gencrated by this technique.

Random-to-aggregated populations, with speci-
fied degrees of clumping, proved relatively unpre-
dictable to compile. Uniform, random, and aggre-
gated clump centres were chosen. and with square
sub-units of three different sizes abeut these points
10, 50 or 250 members were placed i uniform,
random or aggregated groups. This technique was
used to obtain the 27 combinations of between-
clump distribution (Uni, Ran, Agg). within-clump
cdistribution (Uni, Ran, Agg) and clump size (10,
50, 250) (T'able 1). Generally. a large number of
clumps endowed a population with only a mild
degree of aggregation.  Higher density within
clumps, and few clumps with many individuals,
created a higher degree of aggregation. The most
severely aggregated populations were made up of
only four large clumps., some of which were sub-
sequently found by mapping to overlap.

In early runs with the programme it was found
that many sampling points, particularly in aggre-
gated populations, fell closer to the edge of the pop-
ulation than to the nearest member. These sample
points were rejected. and new ones generated,
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1A Uniform populations

Lattice

Square
Triangular
Square
Triangular
Triangular
Square
Triangular
Triangular
Square
Square
Triangular
Square

1B Clumped populations

Clump dis- No. of
distribution clumps
Uni 20
Uni 20
Natural forest population
Uni 20
Ran 20
Uni 100
Agg 20
Ran 20
Ran 20
.'\gg 20)
Uni 10(
Uni 4
Agg 20
Ran 20
Agg 4
Ran 1
Agg 100
Ran 100
Ran 100
Agg 100
Agg 100
Ran 100
Agg 1
Agg 4
Uni 4
Ran 1
Ran 1
Unt 1

This had the insidious effect of tending to locate
“valid” sample points within or near clumps, and
cause sampling to be concentrated in regions of
the plane which contained higher than average
density. The severity of this effect was appreciated

TasrLe 1. Characteristics of Computer Populations.

members

961

900

900

784

961

754

529

625

625

529

289

289

Distribution
within clumps

Ran
Agg
Um
Ran
Agg
Agg
Agg
Unt
Uni
Ran
Ran
Ran
Ran
Agg
Agg
Agg
Agg
Umni
Uni
Ran
Uni
Uni
Ran
Uni
Uni
Ran
Agg

No. of uniform

No. within
clumps

50
50

50
50
10
50
50
50
30
10
250
50
50
250
250
10
10
10
10
10
10
250
250
250
250
250
250

Clump density
per unit area

08
08

08

2

40

08
08
08
08

40

4

08
.08

40
40
40
40
40
40

e

-
[

- -

4
4

Plot count
E = 800

807
923
933
924
859
839
1027
953
869
1022
789
1094
1055
825
845
944
1009
877
837
1190
1180
859
1073
1155
1014
1003
883
706

No. of random Plot count CV%

me mbers E = 800 (plot

count )
39 797 12
100 813 27
100 824 27
216 819 29
39 824 30
246 780 30
471 828 35
375 820 36
375 784 40
471 824 41
711 810 43
711 786 14

CV%
(plot count)

48
53
53
38
39
62
66
67
79
80
80
88
88
95
101
105
105
109
111
122
124
127
132
135
136
146
171
178

when the plot counts were found to range from
about 800 (the figure expected from 200 samples
with a mean count of four per plot) to 1.200, and
when this trend was found to be correlated with
the degree of aggregation as measured by coefhi-
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cient of variation (plot count = 837 + 16.79
(CV,):ir=0.516: P 0.01, where CV,, = coefficient
of variation of plot samples). In other words, rela-
tive to actual density in the vicinity of the sample
points, the population parameter was wrong by up
to 50 percent because of edge effects. Consequently,
estimates of density in the vicinity of the sample
points, calculated from (1,000 x count) /800. are
used as an appropriate estimate of true density of
each population.

TEeEsTs oF THE 50 PERCENT CORRECTED PoOINT
DistaNnceE TECHNIQUE

The estimating formula—
d/D = 1.386 X 1.450 “max.

where b,.« 1s the maximum of b, and b. (Bat-
cheler 1971) was used to estimate density of the
40 computer populations and vielded 33 estimates
within = 15 per cent of the parameter value (Fig.
1. Although these are superficially reasonable
(they are nearly all within the range of error to
be expected on shortest distance theory if the pop-
ulations had actually all been random (Kendal
and Moran 1963) )., two obvious problems are dis-
plaved by the figure. Firstly, there is a clear res-
idual tendency for the corrected estimate to regress
across the expected value (1.0) as a function of
N /= Xr2. This suggests that, even in relatively uni-
form populations, the corrected 50 percent PDE
did not fully cope with dispersion-dependent bias.
Secondly, for seven of the populations, in which
aggregation was so severe that N/= X r2 gave esti-
mates of only three to five percent of true density,
the “corrected” estimates are still 50-75 percent
biased. A new regression formula calculated from
the computer data itself gives—

(50'/; PDE)/D — 1.413 % 1.627"."”’*

(r = 0.9459). This virtually eliminated perceptible
drift in the estimates (compared with that in Fig.
), but made negligible improvement to the esti-
mates for the seven severely aggregated popula-
tions.

These problems, and the over-riding objective of
finding a formula applicable to truncated dis-
tances necessitated further work. It was decided to
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BIAS:UNCORRECTED ESTIMATE

Ficure 1. Values of density calculated by the
shortest distance method on the x-axis (d =
N/= Xr,2) plotted against estimates from the cor-
rected 50 percent point-distance method, y-axis.
Uncorrected estimates, ranging from 2 percent to
188 percent of the expected value, are a measure
of non-randomness in the populations. 19 of the 40
“corrected” estimates are within = 10 percent, 28
are within == 20 percent, 33 are within = 30
percent.

investigate 1nitially the causes of aberration in
distances not subject to any constraint and then
to test whether any solution could be applied to
truncated data.

EstiMATING WiTHOUT CONSTRAINT ON THE
IDISTANCE SEARCHED

Here. the maximum likelihood estimate of
density 15—

N/7m Zr=,
\Vllile bl (:rp/a\-‘.r“ ) . })2 (zr‘)/}:rl:l ‘ and blllll.\

(the largest value of by and b, ) are under evalua-
tion as point-neighbour ratio corrections.

A semi-log plot of the bias of N/#3r2? against
buas (Fig. 2) shows a linear trend over the uni-
form-to-random range, With increasing aggrega-
tion, however, the fit of points drops away in a
sickle shaped arc towards the bottom right of the
figure. Clearly, within this range, b, 1s of
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little use as a correction to the bias of the shortest
distance estimate.

(
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Ficure 2. Three scattergrams and a regression of
log bias of N/= Xr,2 on by. (1), co-efficient of
variation (ii), and the composite correction based
C\
on ——— X /by (crosses) or \/b. (circles),
ECV) . . '
giving A, and A, respectively (u1). The opposing
sickle-shaped arcs of byax and CV against log bias
(free-hand lines) are evident in (i) and (i1). The
line in (i1i) is calculated as mean regression of log
hias against A,., for 28 selected population
samples (see text).

The second scattergram in Figure 2 shows the
semi-log plot of bias against the coefficient of
variation of r,. It is easily seen that this scatter-
gram also displays a sickle-shaped arc of points, and
that they have the interesting property of mirror-
imaging the arc of the b, correction. Indeed
for each of the 40 sample statistics, a “left-hand”
cast of b,,., i1s faithfully mirrored by an extreme
“richt-hand™ cast of CV, and wvice-versa, or alter-
natively. both are neatly centred on their respective
correlation lines. Therefore, it seemed certain that
these two indices of dispersion could be combined
into a single powerful index, correlated with bias
of the shortest distance estimate.

The scattergram of bias against CV  passed
through 1 on the Y axis at about 0.5 (Fig. 2). When
Dr J. H. Darwin showed me (pers. comm.} that
this is nearly the expected value of CV for a
random population (\/(4-x)/= = 0.5227),.
it was realised that both CV/E(CV) and b were
approximately 1 for the random case, that their

product would be approximately 1, that smaller
values would be indicative of uniformity, and that
larger values indicative of aggregation. It was sub-
sequently found by iterative and least squares tests
that CV/E(CV) X \/bu. formed a very good
straight-line scattergram against log of bias of the
point distance estimate. Dehining these as A, A,
and A,.x when b,, b. and b,,. point and
neighbour ratios respectively are used, the depen-
dent regression of log bias on A,,,, for all 40 popu-
lations samples is
d/D = 2.736 X 3.0417Amx (r = _(.983)

as shown 1in scattergram (i), Figure 2.

However, this statement does not discriminate
between A,. A,, and A, as the best choice for
correction of the bias of the point distance esti-
mate.  There is virtually no difference between
them in 28 of the samples, and, for these, A,
would be chosen on grounds of relative ease of field
sampling. But in five of the 40 samples log bias
against A, lies closer to the general correlation set,
while in another three A, lies closer, At this pre-
liminary stage cof screening the behaviour of A
against bias it therefore seemed reasonable to re-
ject samples where A, ciffers markedly (say 10% )
from A..

Similar consideration 1s required of the need to
reject some samples in which the density estimates
are extremely biased. James (1971) has pointed
out that random samphng error in any corrected
estimate 1s likely to be positively related to var-
1ance. Therefore, since point distance estimates as
lew as only two to five percent of true density
were obtained from some aggregated populations,
the problem in evaluating A; and A, is one of
evaluating the fidelity of a correction term which
is required to raise the point distance estimate by
up to 50 times the vield a reasonable value. Quite
small errors in sampling can conceivably be com-
pounded into an estimate which is grossly wrong.
This argument favours rejection of very biased
samples from the analysis.

Accordingly, twelve populations in which A,
differed from A, by more than 10 percent, or in
which N/#Xr,2 is biased by more than 80 percent,
were set aside from the list, and the mean regres-
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sion of log bias against A, was calculated for

the remaining 28. Mean regression, where

b= bix -~ 1/bss;

and a = v — b.x

(Simpscn, Roe and Lewontin 1960) 1s taken as
a more appropriate regression than the dependent
form for log bias on A,... because the variables
are mutually dependent. These give

d/D = 3.473 X 3.717 Awe (r = _(.997).

THE GENERAL FORMULA WHEN A Liyvir DISTANCE
(R) 1s IMPOSED ON THE SEARCH FOR THE
NEAREST MEMBER AND ITs NEIGHBOURS

When used for either truncated or unconstrained
measurements it 1s obviously desirable that the
estimating formula be basically of the same form,
that it should give a reasonable estimate of density
when even a small proportion of successful searches
are made within any given distance R, that it be
subject to few if any “special case” rules, and it
should be reasonably easy to calculate.

Besides the semi-log approach introduced in
the previous section, alternative methods based on
polynomial regressions (James 1971) were ex-
plored, but ran into difficulties. When no limit was
imposed on R, an extremelyv good regression esti-
mator was obtained from the 40 population
samples by his method. Taking VA, as A', it is—

TABLE 2.
. IR
A* L0 01 02 035

0 3564 3564 3565
N 3279 93581 3584 3588 3592
B 3640 630 46356 643 3650

. 3706 3704 3712 3721 3730
4 3782 3793 3802 3812 3821
D 3875 3887 2897 3906 2916
6 3980 3984 3994 4004 4014
) 4113 4095 4108 4122 4136
R 4283 4261 4283 4307 4333
9 4533 4571 4616 4664 4716
1.0 221" 9214

'ng.- l"‘u y -

*Column A, .10 steps of E.. calculated from measurements of a simulated random population. That for { =
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d/D = 2.4847
(A/(1 4+ A’))-=,

- 33701 (A'/(1 4+ A")) + 1.2052
with R = -0.9948 (Fig. 3). However. when pro-
gressively smaller R limits were imposed, third
degree polynomials were required to fit a regres-
sion, and the constants changed almost unpredict-
ably. I could find no wav to reduce them to a
simple estimator which could be used at any fre-
quency value which might be derived from field
data. Further, although the very high coefhicient
of multiple correlation suggests the quadratic fit is
adequate for most samples in which no limit is
set upon R. the transformation used in the regres-
ston engenders false confidence in its power to
correct estimates from aggregated populations.
Hopkins’ transformation of A’ (i.e. A”/(1 + A"))
compresses the A’ values for extremely aggregated
populations into a small region at the tail of the
curve (Fig. 3). Second, the curve is intuitively un-
desirable in that the line cannot produce negative
estimates, whereas these are in fact fitted when A’
exceeds .96 — corresponding to A of 4.9. Poly-
nomial methods were rejected on these grounds.

The semi-log regression model leads to a rela-
tively simple estimator. Only one special case was
found to arise (that of very uniform populations).
and the only statistic which is ponderous to calcu-
late 1s the E(CV) for data in which f is less than
1.

J. H. Darwin (pers. comm.) helped me to dis-
pose of this problem by calculating a set of ap-

Expected Coeflicient of Variation of Point Distances, Calculated from an Empirical Cubic Curve.

B

1.O3187 + 48924f=

04 05 06 07 08 09

4566 3568 3570 3571 0379 3577
3097 3602 A607 3612 3618 3624
3657 664 3672 3680 3688 3696
3738 D747 3756 3765 3774 3784
3830 S840 3849 3859 3868 3878
4925 3935 3945 3954 3964 3974
1025 40356 4047 A058 4070 4082
4151 4167 A184 4201 4220 4240
4360 4389 A421 A454 4490 4529
4772 4832 4897 4968 D043 2125

J181710 - 609461

1.0 1s

\ (4-%) /7. B are .01 steps of E., calculated from the cubic regressicn equation based on the values of column A.
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Fi1Gure 3. Regression of bias of the 40 experimen-
tal populations against A’/(1 + A"), where
A’ is the square root of (CV/E(CV)) \/byax. The
regression line is the quadratic curve of
bias = 2.4847 — 3.7401 (A’/(1 + A’)
+ 1.2052 (A'/(1 + A’))=
for which coefficient of multiple correlation is

—0.9948.

proximate E(CV) values by sampling a simulated
random population in a computer. These are
shown in 10 percent steps of frequency up to 90
percent in the second column of Table 2, and the

value for 100 per cent frequency is taken as

\/ (4-w) /=. Approximate values for one percent
frequency steps were subsequently calculated em-
pirically by least squares, giving—

loge E(CV) = —-1.0319 4 0.4892f2 — 0.7182f4
+ 0.6095f%,

as given in the body of Table 2.

Mean regressions of log bias against A,y were
fitted to sample data arbitrarily restricted to in-
clude 20, 30, 50, 70 and 90 percent of the point
distances. Population samples in which b, differed
by more than 10 percent from by, or the bias ex-
ceeded 80 percent. or A; was less than 0.5 (see
below and caption, Fig. 4). were excluded from
the analysis. Semi-log regressions described these
data very adequately, and it i1s clear that as f is

reduced towards zero. both a and b tend from
100 percent values towards 1 (Fig. 4, Table 3).

An objective measure of the rate of change
of these constants with change of frequency ap-
pears difficult to establish. Fitting the series as
dependent variables on f is not valid, because the
successive estimates are not independent, and be-
cause variance of the constants must change with
. However, since it is known that d/D 1s unbiased
when f is infinitely small (but variance is very
large, a . b A must also tend towards 1, and ali
three terms must equal 1 when f is zero, It there-

TasLe 3. Calculated Regression Constants of Bias Against Correction Factors for Unconstrained and Truncated
Measurements of Distance®.

A. No Cons'raint on R

N f
All populations, bias on Aq 40 100
All populations, bias ocn Ay 40 100
All populations, bias on A 40 100
28 selected populations bias on A 28 100
B. Constraint on R, giving specified 16 90
frequencies, and rejecting samples 27 70
specified in text 26 50

30 30

30 20

Cocfh-
cient of
Dependent Mean Correc-
regression of regressicn tion
bias on A - B
a b a b
2.814 J.281 2.956 3.376 (0.976
2.706 3.059 2.801 3.119 0.983
2.736 3.041 2.836 3.102 0.983
3.459 3.705 3.743 3.717 (0.997
2.723 2.963 2.741 2.980 0.995
2.752 3.104 2. 846 3.189 0.976
2.427 2.638 2.474 2.681 0.984
1.631 1.660 1.808 1.805 0.867
1.398 1.385 1.501 1.467 0.859

*The constants ultimately used from these iterations were based on mean regression for population samples in which
A; and As were nearly equal, and bias of the shortest distance estimate was less than —80%.,
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fore seemed reasonable to propose an estimator of
the form—

d/D = (1 + 2.473f) (1 + 2.717f) “max

as a general estimator when A; == As. As shown
by the regression lines in Figure 4, this turned out
to be a good empirical proposition.

When A, > A,, use of A, as the exponent over-
estimated true density of the aggregated popula-
tions, and some natural aggregated populations

vet to be described, by as much as two to three
times. Conversely, A, as the exponent underesti-
mated true density. Subsequently, in attempting
to bring these difhicult cases into line, it was found
by trial and error that the mean of the two esti-
mates was consistently closer to true density, so—

(1 4+ 2.4731) [

)

=44 Ry
(d/7D) = (1 4+ 27178) 4+ (1 4 2.7171)

becomes the basic general estimator wherever A,
exceeds (.5,
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FIGURE 4. Log bias against A,,.x, for frequencies of 100, 90, 70, 50, 30 and 20 percent. The scales of the
abscissae are moved in steps from left to right to scparate the points for each frequency. The calculated
regression hines are from equation 3 (assuming A, = A.), and clearly show the pivoting of the regression
lines from maximum slope b and highest a intercept at 100 percent [, towards zero slope and a interce pt
at 1, as frequency drops towards zero (right side). Displacement of values (slashed symbols) at the top
left of each set (less than 100 percent f) show the asymptotic nature of An.x in uniform populations
( A < 0.5). These values were extracted and wsed to calculate the quadratic equation for uniform
populations.
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As shown in Figure 4, six of the point distance
estimates, drawn from uniform populations in which
A, < 0.5, give log bias —A,,« intercepts which
depart abruptly from the regression line indicated
by the other 34 values. These represent the be-
haviour of uniform or nearly uniform populations
and appear to form the only special case of the
method for which a basically different calculating
formula 1s necessary. T'his arises in uniform popula-
tions because r,, must always be less than the dis-
tance between neighbours. In the case of the grid
square lattice distribution, r, cannot exceed 0.707
of the grid distance: within a triangular lattice it
cannot exceed 0.625 of the grid distance. Conse-
quently, imposition of any limit R on the search for
r, and r, effectively makes all r,’s greater than
any r,. Therefore

xr,n2N/3r,p?
(1.e. by) tends rapidly towards zero, and is a
measure of asymptotic behaviour of the index of
dispersion. The data for these populations were
therefore extracted and an independent regression
of the bias of the estimate was fitted as the depen-
dent variable against frequency, giving—

d/D = 1.0065 + 0.3401f 4+ 0.4235f=,

[+ provides a simple means of correcting the bias
oi the point distance estimate in these cases, and
the need to emplov it is invariably identified by
Ay = 0:D:

SUMMARY OF THE CALCULATING FORMULAE

The following brief summary draws together the
formulae used in succeeding sections of this paper.

(1) The shortest distance estimate is calculated
from-—

I
d =p/7 (2,2 -+ (N — p)R2).
(2) The correction terms A; and A, are calculated
from—
Ay = CV/E(CV) v/ 2r,n2N/Zr.pb
As = CV/E(CV) v/ 2r,m2N/Zr,.p2n.
(3) If Ay > 0.5—

» (1 4 2.473f) A ~As
(d/D) = —— L A 427178) 4 (14 2.7176) ]

2

h“

or, when A; = A,,

d/D = (1 + 2.473f) (1 4 2.717f)—At,
(4) If A, < 0.5,

d/D = 1.0065 - 0.3401f 4 0.4235f2.

TeEsTs Wit Parer Dot anxp Fierp
PoPULATIONS

So far, the formulae given in the above sum-
mary have been tested by the writer, colleagues at
this station and students of Christchurch Teachers
Training College on 29 populations for which
density was also determined by plot samples or
total counts. Of the 29, 11 were simulated on
paper and 18 are field populations. Thirty-seven
independent distance measurement experiments
have been undertaken in them. As shown by the
following list, two populations — a square chain
area of the mountain daisy (Celmisia spectabilis),
and the pines of Compartment 2 at Ashley State
Forest -—— became favoured experimental subjects.
Efforts were concentrated on the daisy population
because 1ts intense clumping posed the first en-
counter with extremely biased shortest distance
estimates, and ultimate recognition of clumps with-
in clumps and the use of A, (described as second-
order aggregation by Batchelor and Bell (1970) ).
T'he pme plantation became favoured because it re-
presented a typical production ferest inventory pro-
blem, and because estimates of density were avail-
able from forest inventory records. The compart-
ment lies across ridges, slopes and shallow gullies,
with concommittent gradients of tree density and
size. In addition, it contained thinning trials, exten-
sive gaps caused by storms and other gaps in

scrub-choked gullies.

The characteristics of these populations and the
number cf distance sample points used to sample
them are summarised in the following list.

Paper dot populations

(1-3) Three uniform populations simulated by &
grid square of four points within which point
distances were measured from random co-or-
dinates. The grid distance is the neighbour dis-
tance (sample sizes 100, 200, 200).

(4-5) Two random paper dot populations of 400
and 500 members in which three distance
samples were taken from systematically spaced
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points on randomly chosen lines (sample sizes

153; 159, '170).

(6-11) Six aggregated populations of 360 to 600
members, compiled by arbitrary clustering pro-
cedures (Batcheler 1971) and sampled from sys-

tematic points on random lines (sample sizes 79,
07,112, 119, 147, 152).

Natural populations

(12) Thre~ seperate experiments on random lines
in a final crop plantation of Pinus radiata
(Compartment 2, Ashley State Forest), in which
an independent estimate of 346 = 20/ha (P =
0.95) was obtained by counts within circular
sample plots (sample sizes 100, 253, 348).

(13) One experiment using systematically spaced
points on random lines in thinned P. radiata on
a dissected slope (Compartment 4, Ashley State
Forest), which was estimated (692 = 59/ha,
P = 0.95) from counts within 56, 0.04 ha plots
(278 distance samples).

(14) An unthinned plantation of P. nigra which
had suffered extensive natural mortality (Com-
partment 66, Eyrewell State Forest), which was
estimated at 1132 = 84/ha (P = 0.93) from
counts on 38, 0.07 ha plots (sample size 129).

(15-16) Two experiments in a naturally regenera-
ted stand of P. radiata (Compartment 68, Bal-
moral State Forest) which had been thinned
twice, and marked for final crop thinning. The
total stand was estimated at 677 == 47 /ha (P =
0.95) on 56, 0.08 ha plots. The entire marked
crop had been tallied at 326 trees/ha as a
check against calculated specifications for the
crop. Fifty-six sample plots gave an estimate of
341 = 32/ha (P = 0.95). Both total stand
and marked crop were estimated by distances,
on 10 random sample lines (292 distance
samples for both total stand and crop).

(17) A thinned stand of P. radiata at Tiritea Re-
serve, Manawatu, in which all trees of the
sampled area were counted (200 distance
samples) .

(18) A natural population of Beilschmedia tawa
at Tiritea in which all trees of the sampled area
were counted (200 distance samples).

'19-21) Three populations of indigenous beech
(Nothofagus spp) at Makahu, Kaweka State

Forest, Wellington, and Craigieburn State For-
est, Canterbury, in which all trees were counted
(sample sizes 134, 200, 234).

(22) A single experiment in a 405 m?2 area of
dense hard fescue tussocks (Festuca novae-ze-
landiae) at Craigieburn in which all tussocks
were counted. Distances were sampled on a sys-
tematic grid (sample size 100).

(23) A single experiment in a 405 m? area of hard
fescue tussocks, patchily distributed across an
area dissected by erosion pavement. All tus-
socks were counted, and distances were sampled
on a systematic grid (100 samples).

(24) Six different experiments in a 405 m? area
of C. spectabilis. All rosettes were counted, and
distances were measured from both the centres
and intercepts of a systematic grid, and from
random points (sample sizes 100, 100, 100, 121,
200 and 200).

(25-26) Two experiments to estimate density of
rabbit faecal pellets at Cairnhill, Central Otago.
Each consisted of a single line of 100 systemati-
cally spaced points on a line, at each of which
pellets were counted in a 0.09 m2 plot (1.98 =
0.85 and 2.52 = 1.08/m-, P = 0.95) and dis-
tances were measured (sample sizes 100, 100).

(27-29) Three experiments with populations of
hare faecal pellets at Harper-Avoca field station,
Canterbury. Independent counts were made in
100 0.09 m?2 plots giving 7.65 == 1.98 m?2, 5.94
* 1.62 m2 and 10.17 = 2.79 m2 (P = 0.95)
(distance samples 100, 100, 100).

Overall, distance sample size averaged 156

points, and ranged from 79 to 348.

Results of population experiments

Uncorrected and corrected estimates were calcu-
lated for approximately 15 percent steps of the
[requency range 25-100 percent. Eight others, rep-
resenting lower frequency values, were calculated
from the data of the three biggest experiments. All
are summarised as a fraction of the parameter or
sample plot estimate (i.e. the expected value is 1.0)
in Figures 5 and 6, and the accumulated depar-
tures frocm the expected values are shown in Table

4.

Estimates obtained by equation (1), the shortest
distance estimator, effectively indicate the general
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distribution of the populations (Fig. 5). Only five
of the 36 results at 100 percent frequency lie with-
in == 10 percent of the expected value, and could
accordingly be considered random or nearly so.
Thirteen of the remainder were uniform, giving
estimates up to almost twice the expected value,
and 18 were aggregated, giving values ranging

TasLE 4. 135 Uncorrected (left) and Corrected (right)
Estimates Derived from 37 Experiments with 29 Popula-

tions.
Difference
between Uncorrected Corrected
parameter estimates estimates
and No. Accumu- No. Accumu-
estimate within lated within mulated
(% ) range Y% range Yo
1-10 24 17.8 80 59.3
11-20 14 28.1 23 76.3
21-30 18 41.5 23 93.6
31-40 12 50.4 6 97.8
41-50 8 56.3 2 99.3
51-60 7 61.5 0 99.3
61-70 3 67.4 0 99.3
71-80 16 79.3 1 100.0
81-90 19 03.3 0 100.0
91-100 9 100.0 0 100.0
Totals 135 135
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Ficure 5. Uncorrected estimates of density of paper
dot and natural populations (from equation 1),
plotted against frequency.
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Ficure 6. Corrected estimates of density of paper

dot and natural populations, from equations 2, 3

and 4 as appropnriate. Those calculated from the
quadratic equation are shown as asterisks.

down to five percent of the expected value. As
expected on theoretical grounds, the biases in these
estimates are progressively smaller as f diminishes
towards zero (left side of Iig. 4).

In contrast, the corrected estimates obtained from
equations (2) and (3) are strongly grouped, and
with only three exceptions among the 135 calcu-
lated values all are within %40 percent of the ex-
pected value (Fig. 6). By accumulating these as de-
partures from one, 59 percent lie within == 10 per-
cent, 76 percent within = 20 percent, and 93 per-
cent lie within =30 percent of the expected value
(Table 4). This empirically infers that there is
about a 93 percent chance of an estimate being
within =% 30 percent of the true population value,
provided an estimate is based on at least 30 posi-
tive records from 100 or more sample points.

Discussion
Density
In pursuing this study there has been no point

in lamenting that the sampling distributions of the
distance measurements have not been derived from
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theoretical considerations. Rather, given the for-
midable nature of the theoretical problem, the evi-
dence that many different distance functions vyield
a meausre of non-randomness (Hopkins 1954.
Moore 1954, Holgate 1965a and 1965b, Eberhardt
1967), and given evidence that distance ratios
can be used in non-random populations to correct

dispersion-dependent bias of a density estimate
( Morisita 1957, Batcheler and Bell 1970, Batcheler
1971, James 1971 ), there has been ample justifica-
tion for digging into the problem from every
imaginable angle.

Considerable licence was employed in accepting
or rejecting samples simply because the objective
was to develop an empirical function which is free
from gross sampling problems. The coefficient of
variation, the r, distance and the quadratic re-
gression approach to estimating uniform popula-
tions from truncated distance measurements, were
progressively brought into the picture as a tedious
string of analyses whittled away at the obvious re-
maining errors. The only completely subjective
element in this process has been the decisions taken
as to whether occasional “maverick™ estimates in-
dicated some fundamental cause worth pursuing,
or whether they could be written off to chance.
Nonetheless, like any empirical model, the distance
formulae presented must be presumed to carry
some unmeasured taint of the data from which
they have been derived.

At present, the only real test of their worth is the
cvidence from the 29 paper dot and natural pop-
ulation experiments. This is summarised graphi-
cally in Figures 5 and 6 and numerically by the
statement that 93 percent of the corrected esti-
mates lie within 30 percent of “true density”
(Table 4) — a satisfactory result for most prac-
tical purposes. Beyond this, any statement about
the reasons why seven percent of the estimates re-
mained intractably bad becomes inseparable fron:
an object lesson in the pitfalls of experimental in-
vestigation.

Among the estimates for paper dot populations,
where there is of course no error in the density
»arameter, 13 percent of the corrected distance
stimates lay outside the range which would be
xpected by chance from pcint distance theory,
issuming the populations to actually be random.*

These unacceptable values came from intensely
clumped populations in which, as with the com-
puter-simulated populations, considerable numbers
of sampling points had to be declared invalid be-
cause they were closer to the edge of the popula-
tion map than to the nearest member. However,
it the populations were assumed to lie within re-
gions of the respective maps such that no sampling
point was nearer to the edge than to the nearest
member, the estimates in all except one instance
were within the limits for a random population.

The field populations pose a much more mixed
bag.

In one pine plantation (Eyrewell, Cpt. 66),
where distances gave an estimate of only 74 per-
cent of the plot-estimated density, it was subse-
quently learned that double-leader trees, forking
below 4 ft. 6 in., are tallied as two trees in routine
inventories.

Among the other natural populations, particu-
larly aggregated ones, three common problems were
encountered. Some study populations were so small,
or population density was so low, that several
measurements were made to particular members
and their neighbours or, particularly in two experi-
ments (one beech forest, one eroded Festuca area),
several measurements were made across the deline-
ated population boundary to reach the nearest
member. In experiments with hare pellets, which
vielded distance estimates of 58-69 percent of the
plot values, the possibility of a significant degree
of clustering within primary clusters (second order
aggregation) was overlooked. This was later recog-
nised to be a normal attribute of pellets which are
mostly voided in groups in preferred feeding areas
of the range.

The most common problem, however, was large
probable limits of error of the sample plot counts.

|

* 2 - 2d m 2 ry= (Kendall and Moran

INdf (upper or lower)

1963) where d and d

are the upper and lower
upper lower

confidence limits of d, and x* is Chi-square for 2N

2Ndf

degrees of {reedom.
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These were = 14, 26, and 71 percent of the
means in the hare pellet experiments and = 43
percent in both of the rabbit pellet counts (P =
(0.95). Such broad cenfidence limits for the esti-
mates clearly inhibit any precise statement about
relative or absolute accuracy of the distance esti-
mate compared with plot counts: both may be
right; one may be right and the other wrong; both
may be equally wrong. The only definite proof is
yet more testing.

Note on the index of non-randomness

[f bias of the point distance estimate is a func-
tion of dispersion as measured by departure from
the Poissen case, and if, as concluded above, the
corrected estimate is unbiased, then A; and A,
must be measures of non-randomness. This hypo-
thesis cannot be tested with the data from field
populaticns because in non-random populations
S°/X may be unpredictably influenced by the
choice of plot size (Greig-Smith 1964, Kershaw
1957, Southwood 1968, Pielou 1969, Iwao 1972).
On the other hand, since the computer-simulated
populations were nominally of equal density (ig-
noring edge effects) and since density was sampled
by plots of equal size, it was expected that A, and
A. would be correlated with variance, or its dimen-
sionless statistic, coefficient of variation. I'or the
28 populations in which A, differed from A, by less
than 10 percent, their geometric mean, —

Ag = —.0075 + .0203 CV,,

or, within the error limits of regression, CV,=50Ag

.e. Ag is a linear function of the square root of
variance.

This attribute of A is a particularly useful meas-
ure cf non-randomness, because it can be estima-
ted in unknown populations by the single-stage dis-
tance sampling method without need for choice of
the sampling unit. The size of the sampling unit
(rp, Iny, In) is automatically related to density of
the population. It is therefore more versatile than
dispersion indices derived from bounded plot
sampling because, as shown by Pielou (1969) and
Iwao (1972), even powerful indices such as Lloyd’s
(1967) index of mean crowding and Morisita’s
(1959) 18 index cannot be presumed unique to the
population without analysis of a series of plot sizes

sufficient to show that all or nearly all of at
least the smallest plots lie completely within any
density phase. Furthermore, these indices are
known to be valid only if populations occur in
randomly distributed patches of different density
phases, within which the members of a patch are
randomly distributed.

The values for Ay and A, calculated for the
paper dot and natural populations are summarised
in Table 5 with their corresponding uncorrected
and corrected density values, to illustrate the spec-
trum which can be expected from a wide range
of biological populations. Uniform grid square
populations are characterised by A < 0.45. Pine
plantations, in which the original grid distribution
1s broken by silvicultural thinning, natural mor-
tality and such irregularities as scrub-choked gul-
lies, give A in the order of 0.6-0.8, tending to
approximately 0.9 in relatively uneven stands.®

A, excceds 0.95 (the average value for ran-
dom populations from equation (3)) in aggre-
gated populations, As aggregation intensifies to the
degree exemplified by large mats of Celmisia ro-
settes, and by rabbit pellets clumped into “pill
heaps” related to territorial display, A, is in the
order of 2.5, and A, may be as high as 3.5-4.

When R 1s set such that f is less than 100 per-
cent, Ay and A, differ from the 100 percent value
according to the pattern of the population. In uni-
form populations, it rises rather abruptly from zero
as R 1s raised to the extent necessary to take in the
uniformly spaced neighbours. In aggregated popu-
lations however, A may rise or fall as f (and R)
increases, in opposition to the effect of pattern on
the point distance estimate of density. As shown in
Figure 7 where six characteristic patterns of the dis-
tance measures are shown against f, it appears to
be impossible to derive a unique index of non-
randomness from truncated distance measurements.
Nevertheless, the broad pattern of deviations from
randomness are usually evident by A > or < |
when f is 30 percent or more, particularly if popu-
lations are compared by the data for a common
frequency.

*One traverse line through a recently studied compart
ment of P. nigra which had been badly influenced by fros
and scrub-competition gave A, = 1.01, suggesting :
shghtly ageregated distribution.
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Field practice and sampling requirements

There are several “tricks of the trade” in estima-
ting density by this distance technique. Sampling
at systematic intervals on random lines is advocated
because of the speed with which sample points can
be objectively located. Each line of points is then
considered as a single replicate and variance and
confidence limits of the mean can validly be calcu-
lated by normal distribution techniques (Jowett
1967). However, if density follows some discern-
ible gradient along the line, or the line traverses
a patchwork of density and dispersion phases, a
single estimate of density for the whole line is rarely
unbiased. So far as can be judged from present
experience, this problem is best countered by sub-
dividing the line into relatively homogenous units
(strata?), calculating the density for each unit,
and combining them into a single estimate for the
line by weighting according to density and the
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Ficure 7. Six examples of the magnitude and

trend of Ay and Ay, uncorrected estimates and cor-

rected estimates, illustrating patterns which can be
expected in biological populations.

number of sample points in each unit. The weight-
ed mean is then used as the replicate. The need to
subdivide in this way is invariably indicated by
ordering the point-distances from smallest to largest
and calculating about four estimates at uniform in-
tervals of f. A substantial decline of corrected esti-
mates associated with increasing { usually suggests
a polymodal distribution of distances, and the ad-
viszbility of subdivision.

Of course, it is relatively difficult to estimate
density of sparse populations, particularly if mem-
bers cannot easily be seen from the sample point.
For a given effort, however, it is usually advan-
tageous to keep R relatively small (say, large
enough to give [ = 30 percent or more) and con-
centrate the available sampling effort on estab-
lishing a large number of sample points. This re-
commendaticn arises from several interwoven as-
pects of behaviour of the distance equation. First,
since the distribution of point distances 1s root-
skewed, a very large increase of R is usually re-
quired beyond the modal distance to measure the
large distances at the “‘tail-end” of the distribu-
tion. The effort i1s rarely worthwhile ; because “tail-
end”’ distances, of large value, often unduly dis-
turb the estimate of density, and. when large R
is employed, the resulting estimate is more severely
biased and requires a formidable order of correc-
tion (see, for example, Fig. 7E and 7F).

The required number of sample points therefore-
differs according to the pattern of dispersion, and
ease of sighting members of the population.

The estimate for any replicate should be based
on at least 30 measurements of r,,, so that N would
normally be designed to range from about 30 for
a replicate of a uniform population of large en-
tities such as trees (and no R limit would be set)
to about 100 for a sample of aggregated popula-
tions where A; exceeds about 2, or members are
too difficult to find at distance from the sample
point (so f may be 0.3 or even less). When variance
between the replicates is not large, it will turn out
that about five replicates will be required to yield
an estimate with less than = 10 percent probable
error at 95 percent probability. Accordingly, 150-
500 p distances, distributed over about five repli-
cates constitute an adequate sample under average
conditions. But it is imperative that these samples
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TaBLE 5. Summary of data at f = 100% for the Paper Dot and Natural Populations to Show A values for Different
Kinds of Populations. Bias of Uncorrected Estimates, the Corrected Estimates and Coefficient of Variation of the True
Values are also Tabulated.

Type of population Uncorrected
Paper dot Samples estimate
Uniform gnd 100 1.930
Uniform grid 200 1.940
Uniferm grid 200 1.760
Randem 1st sample 153 1.212

2nd sample 159 0.950
Random 170 (0.994
Aggregated 79 ().258
Aggregated 97 0.243
Aggregated 112 0.712
Aggregated 119 0.346
Aggregated 152 0.331

Natural populations
Pinc plantation (Ctp. 2) 100 1.239
Pine plantation (Cpt. 2) 253 1.538
Pine plantaticn (Cpt. 2) 348 1.064
Pine plantation (Cpt. 4) 278 1.109
Pine plantation (Cpt. 66) 129 1.145
Pine plantation (Cpt. 68) 292 1.219
Pine plantaticn (Cpt. 68) 292 1.333
Tiritea pine plantation 200 1.467
Tiritea tawa 200 0.775
Makahu beech forest 200 1.084
Craigieburn beech forest 200 0.630
Craigieburn beech forest 200 0.800
Eroded Festuca 100 .369
Dense Festuca 100 1.125
Celmista spec. 100 0.094
Celmisia spec. 100 0.117
Celmisia spec. 100 0.088
Celmisia spec. 121 0.083
Celmista spec. 200 0.096
Celmisia spec. 200 ().090)
Rabbit pellets 100 0.062
Rabbit pellets 100 0.046
Hare pellets 100 0.296
Hare pellets 100 0.193
Hare pellets 100 0.476

Corrected CcCV
cstimate Ay Ao (plots)

1.040 0.472 -
1.020 0.468 -
(0.994 0.436 - —
1.098 0.882 —
(.887 (.905 - -
0,953 0,926
(1.956 2.056
1.146 2.142 -
1.309 1.127 - —-
1.089 1.787 1.876 —
1.167 1.920 -
1.088 0.858 |
1.040 (.659 :- 31
1.043 0.942 |
1.055 0.920 36
(0.735 0.619 22
).920 0.742 26
1.014 0.749 - 35
1.174 0.750 (0.823
0.884 ().884 - -
1.117 ().981 S—
634 (0.952 ).973
0).956 1.089 1.099
1.363 1.956
1.015 0.879
0.983 2.465 2.958 !
1.013 2.252 2.997
0.743 2.609 2.569 '( 143
(1.871 2.402 2.991
0.796 2.468 2.665
0.609 2,225 2.578
1.121 2.903 3.375 104
1.761 3.592 3.870 104
0.694== 1.609 - 132
0.710= 1.9535 ~ 132
0581 1.110 136

i r. should have been measured, see text.

be well spread throughout the population. As with
the traditional pilot trial practice of step-wise
analysis of counts within bounded plots to deter-
mine what constitutes an adequate sample, there is
no surer guide to distance sampling requirements,
than circular reasoning from results already in
hand.

Basically, a large though undefinable number of
sample points must be advocated for surveys of
unknown populations because determination of the

proportions of different density phases which makes

up the total is invariably the paramount task of
any density assessment.
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ERRATA: BATCHELER, C.L. (1973). ESTIMATING DERSITY AND

T DISPERSION FROM TRUNCATED OR UNRESTRICTED JOINT
PCINT-DISTANCE NEAREST-NEIGHBCUR DISTANCES.
Proc. N.Z. Ecol. Soc. 20: 131-147,

In para. 2 p. 139 it is stated that the average of two
estimates of density, derived from

>
J

d/ab .

and D, = d/ab 2,

consistently gave the most accurate estimate for the population;

i.e., D

(D1 + D?)/Q.

However, the formula given on p. 139, and in the summary of

calculating formulae (No. %, p. 140) for calculating this average,
1S wrong. It should be

-A -A
TERE. IS B
T o< ks Ko=) *
1 2
ab

which simplifies to

D=L (pxM A2
D 5= (b + b <)

Perpetration of this blunder in print is regretted.



